31 |
Eficácia da associação de tadalafila e fluoxetina de liberação lenta no tratamento da ejaculação precoce / Efficacy of tadalafil associated with once-weekly fluoxetine in premature ejaculationRogério de Moraes Mattos 12 August 2005 (has links)
Introdução e objetivos: A ejaculação precoce é uma forma de disfunção sexual presente em 25,8% dos homens brasileiros. O objetivo do presente estudo é avaliar se a associação de tadalafila, um inibidor da fosfodiesterase-5 e fluoxetina, um inibidor da recaptação da serotonina em uma apresentação de liberação lenta, ambos tomados uma vez por semana, pode prolongar o tempo de latência da ejaculação em homens com ejaculação precoce. Pacientes e Métodos: Sessenta pacientes com ejaculação precoce e sem disfunção erétil foram avaliados. A idade média foi 45,5 anos de idade (desvio padrão +/- 9,6). O tempo médio de ejaculação antes do início do tratamento era 51,3 segundos (desvio padrão +/- 23 segundos) e não foi estatisticamente significativo entre os grupos (p=0,805). Foram distribuídos de forma aleatória e duplo-cega em 4 grupos, conforme a medicação recebida: (1) fluoxetina 90 mg e placebo, (2) tadalafila 20 mg e fluoxetina 90 mg, (3) tadalafila 20 mg e placebo, e (4) placebo com placebo. Antes de iniciar qualquer medicamento, os pacientes anotaram o tempo de latência para ejaculação com um mesmo cronômetro uma vez por semana, durante 3 semanas. À partir do início do uso dos medicamentos, os pacientes cronometraram o tempo em nove ocasiões, uma vez por semana. Foi usado fluoxetina 90 mg ou placebo semanalmente e tadalafila 20 mg ou placebo em um intervalo de até 36 horas da presumida relação sexual com parceira heterossexual regular. Os pacientes foram prospectivamente seguidos a cada 3 semanas durante 12 semanas. Resultados: A comparação dos grupos com análise de variância (ANOVA) unidirecional demonstrou diferença estatisticamente significativa no tempo de ejaculação após tratamento (p<0,001). O maior aumento em relação ao tempo basal foi observado no grupo que associou tadalafila 20 mg com fluoxetina 90 mg semanalmente (p<0,001). Reações adversas foram observadas, tendo sido toleradas e equivalentes entre os grupos usando princípio ativo. Conclusão: Tadalafila 20 mg utilizada em um período de 36 horas de atividade sexual associado com fluoxetina 90 mg de liberação lenta usada semanalmente, significativamente aumentou o tempo de latência de ejaculação em homens com ejaculação precoce, quando comparados com cada droga usada isoladamente, beneficiando esses pacientes sem a necessidade do uso diário de medicamentos. / Introduction and Objectives: Premature ejaculation is a sexual disorder present in 25.8% of brazilian men. The aim of the present study is to evaluate if the association of tadalafil, a phosphodiesterase-5 inhibitor and fluoxetine, a selective serotonin reuptake inhibitor in a slow release presentation, both taken once a week, can prolong the intravaginal ejaculatory latency time (IELT) in men with premature ejaculation. Methods: Sixty patients with premature ejaculation and no erectile dysfunction were enrolled in the protocol. Mean age was 45.5 years (range 24 - 64 years, standard deviation +/- 9.6). They were randomly assigned in a double-blind manner into 4 groups to use the medications: (1) fluoxetine 90 mg and placebo, (2) tadalafil 20 mg and fluoxetine 90 mg, (3) tadalafil 20 mg and placebo, and (4) two different placebo capsules. Before starting any medication, each individual timed the IELT with a given stopwatch in 3 different days, and likewise weekly during the treatment period. Mean IELT before starting treatment was 51.3 seconds (sd: +/- 23 seconds), and was not different between groups (p=0.805). They took fluoxetine 90 mg or placebo once a week, and tadalafil 20 mg or placebo in a 36-hour frame of intended sexual intercourse with a regular heterosexual partner. Patients were prospectively followed every 3 weeks during a 12-week interval. Results: Comparison between groups with oneway ANOVA demonstrated a statistically significant difference in post-treatment IELT (p<0.001). The greatest increase in time from baseline IELT was observed in patients in the tadalafil plus fluoxetine group (p<0.001). Side effects were observed and tolerated, being equivalent in groups using active drugs. Conclusion: Tadalafil 20 mg taken in a 36-hour window for sexual intercourse associated with fluoxetine 90 mg in a slow release form taken weekly, significantly increased the intravaginal ejaculatory latency time from baseline in men with premature ejaculation, when compared to either drug taken solely, benefiting patients without the need to be medicated on a daily basis.
|
32 |
Localization and characterization of phosphodiesterase II in intestinal mucosaFlanagan, Peter Rutledge January 1974 (has links)
PDase II activity was determined using a synthetic substrate, the 2,4-dinitrophenyl ester of thymidine 3'-phosphate. The enzyme activity was estimated in fractions obtained by differential centrifugation of homogenates of epithelial cells fromt.the small intestinal mucosa of guinea pigs and rats. In guinea pig preparations PDase II occurred with highest specific activity in those fractions rich in succinate dehydrogenase and acid phosphatase. A lysosomal location for the guinea pig enzyme was indicated by its structure-linked latency and by its association with particles which underwent a characteristic
decrease in equilibrium density when Triton WR-1339 was injected into the animals. With rat preparations a much greater proportion of the PDase II activity was found in the soluble fraction after uult-ra;c;entrifugation. The rat enzyme exhibited a lower degree of latency and administration
of Triton WR-1339 had no effect. The rat enzyme activity in these crude preparations further differed from that of the guinea pig in other respects; it was more labile at 60°C, exhibited a slightly lower pH optimum, had a higher molecular weight as determined by gel filtration chromatography and displayed a much smaller tendency to aggregate under Llow salt conditions. Both enzymes were purified by chromatography on DEAE-cellulose, CM-cellulose and agarose, the extensive
purification (550 fold) of the rat enzyme being largely due to its behaviour oh the latter material where it was found to bind tenaciously in low ionic strength solutions. On the other hand, only a fifteen-fold purification of the guinea pig enzyme was obtained because of its tendency tofform insoluble aggregatesdduring the chromatographic steps. In the main, the properties of the partially purified enzymes were quite similar. Both displayed pH optima between pH 6 and 7, were inhibited in solutions of high ionic strength, were unaffected' by divalent cations or EDTA, were similarly inactivated by heating at a temperature
of 60°G displayed discontinuous Arrhenius plots _5 and exhibited Km values of the order 2-5x10 M for dTpDNP. In most casestfche differences between the enzymes were just differences of degree and could probably be accounted for byethe different extents to which the enzymes were purified. A more extensive characterization of the highly purified rat PDase was carried out. The fall-off in PDase II reaction rate observed at high enzyme levels with dTpDNP as substrate was found to be due to competitive inhibition of the enzyme by dTp, a reaction product which showed a of 2x10 M. The isoelectric point of PDase II was estimated by electrofocusing but since multiple peaks of activity were found at pH 3.4, 4.2-4.5, and pH 7.2 a conclusive result was not obtained. Polyacrylamide gel electrophoresis of purified rat PDase II indicated that the pattern obtained
was, in part, dependent on whether the preparation was fresh or not; freshly purified PDase II contained up to 10 bands in gels stained for protein whereas only 1-2 bands were obtained when the preparations were "aged". A molecular weight of 150000-170000 for the enzyme was estimated in experiments performed by gel-filtration chromatography on dextran and agarose gels. Investigation of the interaction with, and hydrolysis by, rat PDase II of a number of possible phosphodiester substrates indicated that'-, the enzyme required a nucleoside 3'-phosphoryl residue for the initiation of hydrolysis which then proceeded in a 5'+3' direction. Finally, the effect of some enzyme inhibitors was investigated. PDase II activity was inhibited in the presence; of NEM, PCMB, PCMPS and iodoacetic acid. It was further found that the inactivation by iodoacetic acid could be prevented by the presence of a PDase substrate or, better still, by dTp. This is good evidence that iodoacetate alkylates an essential residue at the active center of PDase II and is the first time that such an effect has been shown for a PDase. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate
|
33 |
Evaluation and Characterization of Novel PDE11 InhibitorsLy, Judy January 2023 (has links)
Thesis advisor: Charles Hoffman / The second messenger cyclic 3’-5’ adenosine monophosphate (cAMP) signaling pathway plays an important physiological role in many organisms. Cyclic nucleotide phosphodiesterases (PDEs) regulate signal transduction by catalyzing the hydrolysis of cAMP and cGMP allowing for the downregulation of cyclic nucleotide levels. Human PDEs are encoded by 21 genes grouped into 11 families. The biological role of the most recently discovered PDE family (PDE11) remains poorly understood partly due to the lack of selective inhibitors. Mutations in the PDE11A gene have been linked to a wide range of diseases, such as Cushing Syndrome, which is a result of inactivating mutations expressed in adrenocortical tumors. Meanwhile, PDE11 levels are seen to increase in the ventral hippocampus as a function of aging, and is associated with a loss of social memory. Thus, the development of a selective PDE11 inhibitor could provide a potential therapeutic benefit to patients receiving long-term corticosteroid treatment by stimulating cortisol production by the adrenal gland, as well as to aging adults to maintain social memory. To address these needs, candidate PDE11 inhibitors related to a compound discovered by the Hoffman lab in a high throughput screen for PDE11 inhibitors are being synthesized by the Rotella laboratory. I have been evaluating these compounds using two fission yeast-based growth assays in complement with in vitro enzyme assays carried out by Dr. Jeremy Eberhard.
Here I describe my role in the project, leading to the identification of a compound, SMQ2-57, which is a selective inhibitor of the PDE11 enzyme whose potency has been confirmed through both yeast-based assays and in vitro enzyme assays. In addition, I have taken both a forward and reverse genetic approach to identify PDE11A4 mutant alleles that confer resistance to inhibitor compounds as such knowledge could guide a rational drug design approach to produce more effective PDE11 inhibitors. Based on our results, SMQ2-57 could serve as a useful tool in understanding the biological role of PDE11. Meanwhile, data from my study of compound resistant mutant PDE11 alleles should allow for the characterization of the physical interaction between PDE11 and its inhibitors in an effort to guide a medicinal chemistry program to develop a more potent and drug-like PDE11 inhibitor. / Thesis (BS) — Boston College, 2023. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Scholar of the College. / Discipline: Biology.
|
34 |
PDE1B KO Confers Resilience to Acute Stress-induced Depression-like BehaviorHufgard, Jillian R. 12 December 2017 (has links)
No description available.
|
35 |
The expression and antilipolytic role of phosphodiesterase 4 in rat adipocytes in vitroWang, Hong 24 August 2005 (has links)
No description available.
|
36 |
Characterization of a glycerophosphodiester phosphodiesterase in the human malaria parasite Plasmodium falciparumDenloye, Titilola Ifeoma 08 June 2012 (has links)
Active lipid metabolism is a key process required for the intra-erythrocytic development of the malaria parasite, Plasmodium falciparum. Enzymes that hydrolyze host-derived lipids play key roles in parasite growth, virulence, differentiation, cell-signaling and hemozoin formation. Therefore, investigating enzymes involved in lipid degradation could uncover novel drug targets. We have identified in P. falciparum, a glycerophosphodiester phosphodiesterase (PfGDPD), involved in the downstream pathway of phosphatidylcholine degradation. PfGDPD hydrolyzes deacylated phospholipids, glycerophosphodiesters to glycerol-3-phosphate and choline. In this study, we have characterized PfGDPD using bioinformatics, biochemical and genetic approaches. Knockout experiments showed a requirement for PfGDPD for parasite survival. Sequence analysis revealed PfGDPD possesses the unique GDPD insertion domain sharing a cluster of conserved residues present in other GDPD homologues. We generated yellow fluorescent fusion proteins that revealed a complex distribution of PfGDPD within the parasite cytosol, parasitophorous vacuole and food vacuole. To gain insight into the role of PfGDPD, sub-cellular localization was modulated and resulted in a shift in protein distribution, which elicited no growth phenotype. Kinetic analyses suggest PfGDPD activity is Mg₂⁺ dependent and catalytically efficient at the neutral pH environment of the parasitophorous vacuole. Next, our aim was to determine the upstream pathway that provides deacylated glycerophosphodiesters as substrate for PfGDPD. We identified via bioinformatics, a P. falciparum lysophospholipase (PfLPL1) that directly generates the substrate. Knockout clones were generated and genotyped by Southern and PCR analysis. The effects of PfLPL1 knockouts on parasite fitness were studied, and the results showed that PfLPL1was not required for parasite survival and proliferation. / Ph. D.
|
37 |
Phosphodiesterase 4 Inhibition in the Treatment of Psoriasis, Psoriatic Arthritis and Other Chronic Inflammatory DiseasesWittmann, Miriam, Helliwell, P.S. 06 1900 (has links)
No / Agents which increase intracellular cyclic adenosine monophosphate (cAMP) may have an antagonistic effect on pro-inflammatory molecule production so that inhibitors of the cAMP degrading phosphodiesterases have been identified as promising drugs in chronic inflammatory disorders. Although many such inhibitors have been developed, their introduction in the clinic has been hampered by their narrow therapeutic window with side effects such as nausea and emesis occurring at sub-therapeutic levels. The latest generation of inhibitors selective for phosphodiesterase 4 (PDE4), such as apremilast and roflumilast, seems to have an improved therapeutic index. While roflumilast has been approved for the treatment of exacerbated chronic obstructive pulmonary disease (COPD), apremilast shows promising activity in dermatological and rheumatological conditions. Studies in psoriasis and psoriatic arthritis have demonstrated clinical activity of apremilast. Efficacy in psoriasis is probably equivalent to methotrexate but less than that of monoclonal antibody inhibitors of tumour necrosis factor (TNFi). Similarly, in psoriatic arthritis efficacy is less than that of TNF inhibitors. PDE4 inhibitors hold the promise to broaden the portfolio of anti-inflammatory therapeutic approaches in a range of chronic inflammatory diseases which may include granulomatous skin diseases, some subtypes of chronic eczema and probably cutaneous lupus erythematosus. In this review, the authors highlight the mode of action of PDE4 inhibitors on skin and joint inflammatory responses and discuss their future role in clinical practice. Current developments in the field including the development of topical applications and the development of PDE4 inhibitors which specifically target the subform PDE4B will be discussed.
|
38 |
Molecular determinants of cGMP-binding to chicken cone photoreceptor phosphodiesterase /Huang, Daming, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 95-101).
|
39 |
Konstruktion und Charakterisierung einer lichtaktivierten PhosphodiesteraseGasser, Carlos Fernando 03 December 2015 (has links)
Genetisch kodierte Photorezeptoren in Modellorganismen begründen die Optogenetik. Sie ermöglicht die nicht-invasive, reversible und räumlich-zeitlich präzise Perturbation von zellulären und physiologischen Signalprozessen durch Licht. Natürliche photoaktivierte Adenylylzyklasen (PACs) steigern die intrazelluläre Konzentration des Botenstoffs zyklischen Adenosinmonophosphats (cAMP) durch Blaulicht. Damit erlauben sie die optogenetische Analyse von cAMP-abhängigen Signalwegen. Diese Arbeit komplementiert PACs durch die synthetische rotlichtaktivierte Phosphodiesterase LAPD zur Degradation von cAMP und zyklischem Guanosinmonophosphat (cGMP). LAPD ist eine Chimäre aus dem photosensorischen Modul von Deinococcus radiodurans Bakteriophytochrom (DrBPhy) und der Effektordomäne der cAMP/cGMP-spezifischen H. sapiens Phosphodiesterase 2A (HsPDE2A). Die Fusionsstelle wurde von den helikalen Linkern zwischen Sensor- und Effektormodulen durch strukturelle Überlagerung abgeleitet. LAPD inkorporierte den Chromophor Biliverdin (BV) nach Expression in E. coli und Reinigung vollständig und entsprach spektral und photochemisch dem Wildtyp-DrBPhy. Durch Bestrahlung mit Rot- und Fernrotlicht (R bzw. FR) wurde LAPD in die metastabilen photochemischen Zustände Pfr (fernrot) bzw. Pr (rot) umgewandelt. Vollständig aktivierte LAPD katalysierte die Hydrolyse von cGMP und cAMP in derselben Größenordnung wie Wildtyp-HsPDE2A. LAPD degradierte cGMP und cAMP bei 6- bzw. 4-facher Steigerung von vmax unter R im Vergleich zu dunkeladaptiertem Enzym. Die Aktivität von R-adaptierter LAPD wurde durch FR reduziert. Die enzymatische Aktivität und Lichtregulation von LAPD-Linkervarianten waren abhängig von der Linkerlänge. LAPD degradierte lichtabhängig cGMP in einer PDE-Reporterzelle. Dabei genügte die endogene BV-Konzentration der Säugerzelle zur Sättigung des Lichteffekts. / Genetically encoded photoreceptors in model organisms establish optogenetics. It enables non-invasive, reversible, and spatio-temporally precise perturbation of cellular and physiological signalling by light. Natural photoactivated adenylate cyclases (PACs) increase the intracellular concentration of the second messenger cyclic adenosine monophosphate (cAMP) under blue light. Hence, PACs allow the optogenetic analysis of cAMP-dependent signalling. This work complements PACs with the synthetic red-light-activated phosphodiesterase LAPD for degradation of cAMP and cyclic guanosine monophosphate (cGMP). LAPD is a chimera made up of the photosensory module of Deinococcus radiodurans bacteriophytochrome (DrBPhy) and the effector domain of cAMP/cGMP-specific H. sapiens Phosphodiesterase 2A (HsPDE2A). The fusion site was derived from the helical linkers between sensor and effector modules via structural superposition. LAPD incorporated the chromophor biliverdin (BV) after expression in E. coli and purification quantitatively, and spectrally and photochemically resembled the wildtype DrBPhy. Upon irradiation with red and far-red light (R and FR, resp.), LAPD was converted to the metastable photochemical states Pfr (far-red) and Pr (red), respectively. Fully activated LAPD catalized the hydrolysis of cGMP and cAMP with rates similar to wildtype HsPDE2A. LAPD degraded cGMP and cAMP with 6- and 4-fold increase of vmax under R, respectively, as compared to the dark state. The activity of R-adapted LAPD was reduced upon irradiation with FR. Enzymatic activity and light regulation of LAPD linker variants depended on the linker length. LAPD light-dependently degraded cGMP in a PDE reporter cell line. Endogenous BV concentrations were sufficient to saturate the light effect in the mammalian cell, which enables a true optogenetic approach.
|
40 |
Caractérisation structurale et fonctionnelle de l’opéron acc chez Agrobacterium tumefaciens C58 / Structural and functionnal characterization of acc operon from Agrobacterium tumefaciensEl Sahili, Abbas 18 September 2015 (has links)
Agrobacterium tumefaciens est une bactérie du sol responsable de la galle du collet chez les plantes lorsqu'elle possède le plasmide Ti (Tumor inducing) dit de virulence (pTi). La bactérie transfère un morceau d’ADN du pTi dans le génome de la plante qui code d'une part la production d’hormones de plantes, à l’origine de la formation de tumeurs colonisées par les bactéries et d'autre part la production de petites molécules (opines) qui servent de nutriment à A. tumefaciens. L'opine, agrocinopine A induit la production de signaux quorum sensing à l’origine de la dissémination du plasmide de virulence vers des bactéries non pathogènes. Agrobacterium radiobacter K84, une bactérie non pathogène, produit de l’agrocine 84, un antibiotique qui tue A. tumefaciens.L’import et le catabolisme de l’agrocinopine A sont réalisés par l’opéron acc présent sur le pTi. La protéine périplasmique (PBP) AccA associée à un transporteur ABC importe l’opine dans le cytoplasme qui est ensuite dégradée par AccF et AccG. AccR régule l’expression de l’opéron acc et celle du facteur de transcription TraR, central dans la signalisation quorum sensing. AccA importe l’agrocine 84 qui est activée par AccF. Mon travail de doctorat a permis par des études structure-fonction de caractériser la spécificité d'AccA et d’AccF et d’initier l’étude du facteur de transcription AccR. L’étude structurale de la PBP en complexe avec l’agrocinopine A, l’agrocine 84 et des dérivés de ces molécules a révélé que seul le motif pyranose-2-phosphate commun aux 2 molécules était reconnu par AccA. Cela a été confirmé par microcalorimétrie et autofluorescence. Le motif pyranose-2-phosphate permettrait donc l’entrée de toute molécule qui le possède à une extrémité. La structure de l’enzyme AccF a montré que là encore seul le groupement pyranose-2-phosphate est reconnu. A partir de la structure obtenue et de modélisation du substrat dans le site actif, un mécanisme enzymatique original pour l’hydrolyse de la liaison phosphodiester est proposé. Les mesures d’affinité par microcalorimétrie montrent que seuls l’arabinose-2-phosphate et le glucose-2-phosphate sont capables de fixer AccR. Des expériences in cellulo ont confirmé qu'ils régulent bien l'expression du QS.Mes travaux apportent un éclairage nouveau sur l’import et l'utilisation de l’agrocinopine chez A. tumefaciens. La spécificité de reconnaissance de la PBP pour une partie de la molécule importée est observée chez d’autres PBP, et ouvre la voie à la conception de molécules antibiotiques qui, à l’image de l’agrocine 84, utilisent une stratégie de type « cheval de Troie ». / Agrobacterium tumefaciens is a soil bacterium responsible of the crown gall in plants when it possesses the Tumor inducing plasmid (pTi) which is also the virulence plasmid. The bacterium transfers a piece of DNA from the pTi into the plant genome. The transferred DNA codes for plant hormone synthesis, leading to the formation of tumors which are colonized by bacteria, on one hand, and on the other hand, for the synthesis of small molecules (opines) that are used as nutrients by A. tumefaciens. The opine agrocinopine A induces the production of quorum sensing signals responsible for the spread of the virulence plasmid from pathogenic to nonpathogenic bacterium. Agrobacterium radiobacter K84, a nonpathogenic bacterium, produces the agrocin 84, an antibiotic that kills A. tumefaciens.Import and catabolism of agrocinopine A are operated by acc operon, present on the pTi. The periplasmic binding protein AccA (PBP AccA) associated with the ABC transporter imports the opine into the periplasm where it is degraded by AccF and AccG. AccR regulates the expression of the acc operon and that of the transcription factor TraR, central in quorum sensing signaling. AccA also imports agrocin 84, which is activated by AccF. My PhD work focused on AccA and AccF specificity through structure-function studies and I initiated the study of the transcription factor AccR. The structural study of AccA in complex with agrocinopine A, agrocin 84 and derivatives from these molecules revealed that only the pyranose-2-phosphate motif, common in these two molecules, was recognized. Microcalorimetry and autofluorescence measurements confirmed this conclusion. The pyranose-2-phosphate motif would allow any compound possessing this motif at one end to be transported. The structure of the enzyme AccF showed that again only the pyranose-2-phosphate group is recognized. From the structure and molecular modelling of the substrate in the active site, an original mechanism of the phosphodiester bond cleavage is proposed. Microcalorimetry affinity measures showed that only the arabinose-2-phosphate and glucose-2-phosphate are capable of interacting with AccR. In cellulo experiments confirm that both compounds regulate the expression of quorum sensing.My work sheds light on import and use of agrocinopine in A. tumefaciens. Recognition specificity of the PBP AccA for a part of the imported molecule is observed in other PBPs and opens new ways for rational design of antibiotic compounds that, similarly to agrocin 84, would use the “Trojan horse” strategy.
|
Page generated in 0.0722 seconds