• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 14
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 384
  • 384
  • 207
  • 202
  • 73
  • 71
  • 70
  • 68
  • 67
  • 61
  • 51
  • 48
  • 48
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Low-Cost Iron-Based Cathode Materials for Large-Scale Battery Applications

Nytén, Anton January 2006 (has links)
<p>There are today clear indications that the Li-ion battery of the type currently used worldwide in mobile-phones and lap-tops is also destined to soon become the battery of choice in more energy-demanding concepts such as electric and electric hybrid vehicles (EVs and EHVs). Since the currently used cathode materials (typically of the Li(Ni,Co)O<sub>2</sub>-type) are too expensive in large-scale applications, these new batteries will have to exploit some much cheaper transition-metal. Ideally, this should be the very cheapest - iron(Fe) - in combination with a graphite(C)-based anode. In this context, the obvious Fe-based active cathode of choice appears to be LiFePO<sub>4</sub>. A second and in some ways even more attractive material - Li<sub>2</sub>FeSiO<sub>4</sub> - has emerged during the course of this work.</p><p>An effort has here been made to understand the Li extraction/insertion mechanism on electrochemical cycling of Li<sub>2</sub>FeSiO<sub>4</sub>. A fascinating picture has emerged (following a complex combination of Mössbauer, X-ray diffraction and electrochemical studies) in which the material is seen to cycle between Li<sub>2</sub>FeSiO<sub>4</sub> and LiFeSiO<sub>4</sub>, but with the structure of the original Li<sub>2</sub>FeSiO<sub>4</sub> transforming from a metastable short-range ordered solid-solution into a more stable long-range ordered structure during the first cycle. Density Functional Theory calculations on Li<sub>2</sub>FeSiO<sub>4</sub> and the delithiated on LiFeSiO<sub>4</sub> structure provide an interesting insight into the experimental result.</p><p>Photoelectron spectroscopy was used to study the surface chemistry of both carbon-treated LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub> after electrochemical cycling. The surface-layer on both materials was concluded to be very thin and with incomplete coverage, giving the promise of good long-term cycling.</p><p>LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub> should both be seen as highly promising candidates as positive-electrode materials for large-scale Li-ion battery applications.</p>
222

Applications of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and x-ray photoelectron spectroscopy (XPS) to study interactions of genetically engineered proteins with noble metal films /

Suzuki, Noriaki, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 132-140).
223

Techniques and Application of Electron Spectroscopy Based on Novel X-ray Sources

Plogmaker, Stefan January 2012 (has links)
The curiosity of researchers to find novel characteristics and properties of matter constantly pushes for the development of instrumentation based on X-radiation. I present in this thesis techniques for electron spectroscopy based on developments of X-ray sources both in time structure and energy. One part describes a laser driven High-Harmonic Generation source and the application of an off-plane grating monochromator with additional beamlines and spectrometers. In initial experiments, the source is capable of producing harmonics between the 13th and 23rd of the fundamental laser 800 nm wavelength. The intensity in the 19th harmonic, after monochromatization, was measured to be above 1.2·1010 photons/second with a repetition rate of 5 kHz.  The development of a chopper system synchronized to the bunch clock of an electron storage ring is also presented. The system can be used to adjust the repetition rate of a synchrotron radiation beam to values between 10 and 120 kHz, or for the modulation of continuous sources. The application of the system to both time of flight spectroscopy and laser pump X-ray probe spectroscopy is shown. It was possible to measure triple ionization of Kr and in applied studies the valence band of a laser excited dye-sensitized solar cell interface. The combination of the latter technique with transient absorption measurements is proposed. The organic molecule maleic anhydride (MA) and its binding configuration to the three anatase TiO2 crystals (101), (100), (001) has been investigated by means of Xray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine structure Spectroscopy (NEXAFS). The results provide information on the binding configuration to the 101 crystal. High Kinetic Energy Photoelectron Spectroscopy was used to investigate multilayers of complexes of iron, ruthenium and osmium. The benefit of hard X-rays for ex-situ prepared samples is demonstrated together with the application of resonant valence band measurements to these molecules.
224

Surface Reactivity and Electronic Structure of Metal Oxides

Önsten, Anneli January 2011 (has links)
The foci of this thesis are the metal oxides Cu2O, ZnO and Fe3O4 and their interaction with water and sulfur dioxide (SO2). The intention is to study SO2-induced atmospheric corrosion on a molecular level. All studies are based on photoelectron spectroscopy (PES) and scanning tunneling microscopy (STM) measurements. The band structure of Cu2O in the Γ-M direction has been probed by angle-resolved PES (ARPES). It reveals a more detailed picture of the bulk band structure than earlier data and gives the first experimental evidence of a dispersive hybridized Cu 3d-Cu 4s state. The experimental data is compared to band structure calculations. The structure of clean metal oxide surfaces and impact of sample preparation have been studied. Oxygen vacancies can form a (√3x√3)R30° reconstruction on Cu2O(111). Oxygen atoms adjacent to copper vacancies, steps or kinks are shown to be adsorption sites for both water and SO2. Annealing temperature influences the defect density and hydrogen content in ZnO, which can have large impact on the surface properties of ZnO(0001). Water is shown to adsorb dissociatively on ZnO(0001) and partly dissociatively on Cu2O(111). The dissociation occurs at undercoordinated oxygen sites on both surfaces. Water stays adsorbed on ZnO(0001) at room temperature but on Cu2O(111), all water has desorbed at 210 K. SO2 interacts with one or two undercoordinated O-sites on all studied oxide surfaces forming SO3 or SO4 species respectively. SO4 on Fe3O4(100) follows the (√2x√2)R45° reconstruction. On Cu2O(111) and ZnO(0001), SO2 adsorbs on defect sites. An SO3 to SO4 transition is observed on Cu2O(111) when heating an SO3 adsorbate layer from 150 K to 280K. Coadsorption of water and SO2 on ZnO(0001) and Fe3O4(100) has been studied briefly. Water blocks SO2 adsorption sites on ZnO(0001). On Fe3O4(100) and on one type of reduced ZnO(0001) sample, SO2 dissociation to atomic sulfur or sulfide occurs to a higher extent on water exposed surfaces than on clean surfaces. Water thus appears to increase the charge density on some surfaces. Further studies are needed to reveal the cause of this unexpected effect. / <p>QC 20110516</p>
225

Preparation and characterization of an organic-based magnet

Carlegrim, Elin January 2007 (has links)
In the growing field of spintronics there is a strong need for development of flexible lightweight semi-conducting magnets. Molecular organic-based magnets are attractive candidates since it is possible to tune their properties by organic chemistry, making them so-called “designer magnets”. Vanadium tetracyanoethylene, V(TCNE)x, is particularly interesting since it is a semiconductor with Curie temperature above room temperature (TC~400 K). The main problem with these organic-based magnets is that they are extremely air sensitive. This thesis reports on the frontier electronic structure of the V(TCNE)x by characterization with photoelectron spectroscopy (PES) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. It also presents a new and more flexible preparation method of this class of organic-based thin film magnets. The result shows improved air stability of the V(TCNE)x prepared with this method as compared to V(TCNE)x prepared by hitherto used methods.
226

Quantum Dynamics of Molecular Systems and Guided Matter Waves

Andersson, Mauritz January 2001 (has links)
Quantum dynamics is the study of time-dependent phenomena in fundamental processes of atomic and molecular systems. This thesis focuses on systems where nature reveals its quantum aspect; e.g. in vibrational resonance structures, in wave packet revivals and in matter wave interferometry. Grid based numerical methods for solving the time-dependent Schrödinger equation are implemented for simulating time resolved molecular vibrations and to compute photo-electron spectra, without the necessity of diagonalizing a large matrix to find eigenvalues and eigenvectors. Pump-probe femtosecond laser spectroscopy on the sodium potassium molecule, showing a vibrational period of 450 fs, is theoretically simulated. We find agreement with experiment by inclusion of the finite length laser pulse and finite temperature effects. Complicated resonance structures observed experimentally in photo-electron spectra of hydrogen- and deuterium chloride is analyzed by a numerical computation of the spectra. The dramatic difference in the two spectra arises from non-adiabatic interactions, i.e. the interplay between nuclear and electron dynamics. We suggest new potential curves for the 32Σ+ and 42Σ+ states in HCI+. It is possible to guide slow atoms along magnetic potentials like light is guided in optical fibers. Quantum mechanics dictates that matter can show wave properties. A proposal for a multi mode matter wave interferometer on an atom chip is studied by solving the time-dependent Schrödinger equation in two dimensions. The results verifies a possible route for an experimental realization. An improved representation for wave functions using a discrete set of coherent states is presented. We develop a practical method for computing the expansion coefficients in this non-orthogonal set. It is built on the concept of frames, and introduces an iterative method for computing a representation of the identity operator. The phase-space localization property of the coherent states gives adaptability and better sampling efficiency.
227

Catalytic combustion of methane

Thevenin, Philippe January 2002 (has links)
Catalytic combustion is an environmentally benign technologywhich has recently reached the stage of commercialization.Palladium is the catalyst of choice when considering gasturbines fuelled with natural gas because of its superioractivity for methane oxidation. Several fundamental issues arestill open and their understanding would result in animprovement of the technology. Hence, the work presented inthis thesis aims at the identification of some of theparameters which govern the combustion activity ofpalladium-based catalysts. The first part of this work gives a background to catalyticcombustion and a brief comparison with other existingtechnologies. Paper I reviews some of the issues related tomaterial development and combustor design. The second part of this thesis consists of an experimentalinvestigation on palladium-based catalysts. The influence ofthe preparation method onthe properties of these catalystmaterials is investigated in Paper II. Paper III examines theactivity of the following catalysts: Pd/Al2O3, Pd/Ba-Al2O3 andPd/La-Al2O3. Specific attention is given to the metal-supportinteraction which strongly affects the combustion activity ofpalladium. The effect of doping of the support by addition ofcerium is reported in Paper IV. Finally, the deactivation of combustion catalysts isconsidered. The various deactivation processes which may affecthigh temperature combustion catalysts are reviewed in Paper V.Paper VI focuses on the poisoning of supported palladiumcatalysts by sulphur species. Palladium exhibits a higherresistance to sulphur poisoning than transition metals.Nevertheless, the nature of the support material plays animportant role and may entail a severe loss of activity whensulphur is present in the fuel-air mixture entering thecombustion chamber. <b>Keywords</b>: catalytic combustion, gas turbine, methane,palladium, alumina, barium, lanthanum, oxidation, preparation,temperature-programmed oxidation (TPO), decomposition,reoxidation, X-ray photoelectron spectroscopy (XPS),metal-support interaction, deactivation, sulphur, poisoning.The cover illustration is a TEM picture of a 100 nm palladiumparticle supported on alumina
228

Towards Safer Lithium-Ion Batteries

Herstedt, Marie January 2003 (has links)
Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) and Differential Scanning Calorimetry (DSC) are used to investigate the surface chemistry of electrodes in relation to their electrochemical performance. Surface film formation and decomposition reactions are discussed. The upper temperature limit for lithium-ion battery operation is restricted by exothermic reactions at the graphite anode; the onset temperature is shown to be governed by the composition of the surface film on the anode. Several electrolyte salts, additives and an anion receptor have been exploited to modify the surface film composition. The most promising thermal behaviour is found for graphite anodes cycled with the anion receptor, tris(pentafluorophenyl)borane, which reduces salt reactions and increases the onset temperature from ~80 °C to ~150 °C. The electrochemical performance and surface chemistry of Swedish natural graphite, carbon-treated LiFePO4 and anodes from high-power lithium-ion batteries are also investigated. Jet-milled Swedish natural graphite exhibits a high capacity and rate capability, together with a decreased susceptibility to solvent co-intercalation. Carbon-treated LiFePO4 shows promising results: no solvent reaction products are detected. The amount of salt compounds increases, with power fade occurring for anodes from high-power lithium-ion batteries; the solvent reduction products comprise mainly Li-carboxylate type compounds.
229

The Preparation And Analysis Of New Carbon Supported Pt And Pt+second Metal Nanoparticles Catalysts For Direct Methanol Fuel Cells

Sen, Fatih 01 September 2012 (has links) (PDF)
In this thesis, firstly, carbon-supported platinum nanoparticle catalysts have been prepared by using PtCl4 and H2PtCl6 as starting materials and 1-hexanethiol, and tert-octanethiol, as surfactants for the first time. Secondly, these prepared catalysts were heated to 200 &deg / C, 300 &deg / C, and 400 &deg / C for 4 h under argon gas. Lastly, PtRu/C catalysts, which have different atomic percent ratios of Pt and Ru (Pt/Ru: 0.8, 2.1 and 3.5), were prepared using PtCl4 and RuCl3 as starting materials and tert-octanethiol as a surfactant. Each was characterized by X-ray diffraction, transmission electron microscopy, energy dispersive analysis, X-ray photoelectron spectroscopy, cyclic voltammetry, and elemental analysis, and their activities were determined toward the methanol oxidation reaction. It has been found that all prepared catalysts are more active toward methanol oxidation reaction compared to the commercial catalysts. It was also found that increasing the temperature during the heat treatment process results in an enlargement of platinum particle size and a decrease in catalytic activity in the methanol oxidation reaction. Transmission electron microscopy shows that platinum nanoparticles are homogeneously dispersed on the carbon support and exhibited a narrow size distribution with an average particle size of about 2-3 nm in diameter. X-ray photoelectron spectra of all catalysts indicated that most of the platinum nanoparticles (&gt / 70 %) have an oxidation state of zero and rest (&lt / 30 %) have a +4 oxidation state with (Pt 4f7/2) binding energies of 71.2-72.2 and 74.3-75.5 eV, respectively.
230

Adatoms, Quasiparticles &amp; Photons : The Multifaceted World of Photoelectron Spectroscopy

Månsson, Martin January 2007 (has links)
The experimental work presented in this thesis is based on a wide assortment of very advanced and highly sophisticated photoelectron spectroscopy (PES) techniques. The objective of the present study has been to reveal and understand the electronic structure and electron dynamics in a broad spectrum of materials, ranging from wide band gap oxides, via semiconductors along with metals, and finally high-temperature superconductors. The first part of the thesis concerns laser-based pump-and-probe PES. This unique experimental technique has permitted a study of the excited electronic structure and the electron dynamics of several semiconductor surfaces. An insight into details of the adatom to restatom charge-transfer of the Ge(111)c(2x8) surface is presented, as well as an estimate for the timescale in which the dynamic adatoms of the Ge(111):Sn(sqrt3xsqrt3)R30deg surface operate. Further results comprise a novel unoccupied surface state at the GaSb(001) surface as well as a time-resolved study of the charge accumulation layer at the InAs(111)A/B surfaces. In the second part, high-resolution synchrotron based angle-resolved PES (ARPES) data from the cuprate high-temperature superconductor La(2-x)Sr(x)CuO(4) (LSCO) is presented. This extensive study, reveals detailed information about how the Fermi surface and electronic excitations evolve with doping in the superconducting state. The results comprise support for a connection between high- and low-energy electronic responses, the characteristics of the superconducting gap, and indication of a quantum phase transition between two different superconducting phases. In the third group of experiments we move away from the two-dimensional systems and concentrate on fully three-dimensional compounds. By the use of soft x-ray ARPES it is possible to extract the three-dimensional electronic structure in a straightforward manner with increased k(perpendicular)-resolution. As a result the first high-quality ARPES data from Cu2O is presented, as well as a novel method for extracting the (real space) electron density by ARPES. These experiments clearly display the advantages of using soft x-ray ARPES. If the material and type of experiment is chosen wisely, the benefit of the increased k||-window and the free electron final state, surpass the drawbacks of decreased count-rate and inferior energy resolution. Finally we return to the high-temperature superconductors (NCCO &amp; Nd-LSCO) and make use of the increased bulk-sensitivity. From an evident change in the shape of the Fermi surface when moving from low to high photon energies, the durface to bulk difference in electronic structure is highlighted. / QC 20100810

Page generated in 0.1063 seconds