201 |
Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)Smykalla, Lars, Shukrynau, Pavel, Korb, Marcus, Lang, Heinrich, Hietschold, Michael 22 April 2015 (has links) (PDF)
A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300 °C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characterized using scanning tunneling microscopy. Different kinds of lattice defects and, furthermore, the impact of polymerization on the HOMO–LUMO gap are discussed. Density functional theory calculations corroborate the interpretations and give further insight into the adsorption of the debrominated molecule on the surface and the geometry and coupling reaction of the polymeric structure. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
202 |
Towards Mixed Molecular Layers for Dye-Sensitized Solar Cells : A Photoelectron Spectroscopy StudyOscarsson, Johan January 2016 (has links)
The increasing demand for renewable energy has led to substantial research on different solar cell technologies. The dye-sensitized solar cell (DSC) is a technology utilizing dye molecules for light absorption. Dye molecules are adsorbed to a mesoporous semiconductor surface and after light absorption in the dye, charge separation occurs at this interface. Traditionally, DSCs have used layers of single dye species, but in recent efforts to enhance power conversion efficiency, more complex molecular layers have been designed to increase the light absorption. For example, the most efficient DSCs use a combination of two dye molecules, and such dye co-adsorption is studied in this thesis. A key to highly efficient DSCs is to understand the dye/semiconductor interface from a molecular perspective. One way of gaining this understanding is by using an element specific, surface sensitive technique, such as photoelectron spectroscopy (PES). In this thesis, PES is used to understand new complex dye/semiconductor interfaces. Dyes adsorbed to semiconductor surfaces are analyzed using PES in terms of geometric and electronic surface structure. The investigations ultimately target the effects of co-adsorbing dyes with other dyes or co-adsorbents. PES shows that Ru dyes can adsorb in mixed configurations to TiO2. Co-adsorption with an organic dye affects the configuration of the Ru dyes. As a consequence, shifts in energy level alignment and increased dye coverage are observed. The dyes are affected at a molecular level in ways beneficial for solar cell performance. This is called collaborative sensitization and is also observed in todays most efficient DSC. Dye molecules are generally sensitive to high temperatures and the substantial decrease in power conversion efficiency after heat-treatment can be understood using PES. Furthermore, comparing two mesoscopic TiO2 morphologies used in DSCs show differences in trap state density in the band gap, explaining the photovoltage difference in DSCs comprising these morphologies. Using mixed molecular layers on NiO results in significant improvements of p-type DSC power conversion efficiency. PES shows that changed adsorption configuration contribute to this effect. This thesis shows that PES studies can be used to obtain insight into functional properties of complex DSC interfaces at a molecular level.
|
203 |
A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metalsMakarova, Anna A., Grachova, Elena V., Niedzialek, Dorota, Solomatina, Anastasia I., Sonntag, Simon, Fedorov, Alexander V., Vilkov, Oleg Yu., Neudachina, Vera S., Laubschat, Clemens, Tunik, Sergey P., Vyalikh, Denis V. 12 December 2016 (has links) (PDF)
The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.
|
204 |
[en] IMPLICATIONS OF THE C/N FEEDSTOCK ON CONTROLLING THE NITROGEN DOPING AND BONDING ENVIRONMENT IN CARBON NANOTUBES / [pt] EFEITOS DE FONTE PRECURSORA NO CONTROLE DA DOPAGEM E AMBIENTE QUÍMICO EM NANOTUBOS DE CARBONO DOPADOS COM NITROGÊNIOPAOLA ALEXANDRA AYALA HINOJOSA 22 August 2007 (has links)
[pt] Os tópicos mais importantes a ser tratados nesta tese de
doutorado são os vários problemas envolvidos na síntese
de
nanotubos contendo nitrogênio. Isto é principalmente
motivado pelas possíveis aplicações que podem ser dadas
a
este tipo de estruturas. A motivação central está
relacionada ao fato da possibilidade de fazer dopagens
tipo -p e -n em nanotubos de carbono, incorporando
átomos
como boro ou nitrogênio. Isto está muito longe de ser
uma
trivialidade devido a que devemos levar em conta que se
os
nanotubos de carbono forem pensados como bases
estruturais
para nanocompósitos e dispositivos nanoeletronicos, é
necessário controlar cuidadosamente a reatividade das
paredes, sua dureza mecânica e o gap eletrônico por meio
de um controle da quantidade de átomos inseridos nas
paredes ou entre elas. Portanto, do ponto de vista de
diferentes aplicações, é importante ter a possibilidade
de
dopar controladamente os nanotubos. Neste trabalho
apresentam-se o quadro descritivo da dependência dos
parâmetros de síntese, assim como uma investigação
detalhada da formação de outras estruturas co-produto do
processo de formação de nanotubos. Como uma idéia
pioneira
proposta neste trabalho, é enfatizado o uso de fontes
puras de C/N em processos de síntese baseados em
deposição
química na fase de vapor. Desta maneira foi possivel
determinar os efeitos da atmosfera de reação e o
pretratamento do catalizador como agentes favoráveis ou
desfavoráveis para a síntese efetiva de nanotubos de
carbono. / [en] The main topic of this thesis is the study of various
issues related to
the synthesis of nitrogen containing nanotubes. This is
mainly inspired in
the possible applications such structures can have.
The practical background lies in the fact that defined n-
and p-doping
of carbon nanotubes can be achieved by substituting carbon
atoms from
the tube walls by heteroatoms such as boron or nitrogen
(N). This is
far from been a triviality because we must keep in mind
that if carbon
nanotubes are to be used as future building blocks in
nanocomposites and
nanoelectronic devices, it is imperative to fine tune
their wall reactivity,
mechanical strength and electronic band gap by controlling
the amount of
foreign atoms inserted into the tube lattices. Therefore,
from an applications
standpoint, it is important to be able to carefully
control the insertion of
different dopants into nanotubes.
In this work, a complete picture of the dependence on the
combined
synthesis parameters is established and a fundamental
insight into the
formation of N doped nanotubes and other structures (co-
products) is
provided. As a pioneering idea of this whole work, the use
of pure C/N
feedstocks in chemical vapor deposition methods is
emphasized. With this,
it was possible to determine the effects of the reaction
atmosphere and the
catalyst pretreatment as either favoring or disfavoring
agents towards the
synthesis of N-doped nanotubes.
|
205 |
Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting / Analyse d’interface et développement des hétérostructures de BiVO4 et CuFeO2 pour le craquage photochimique de l’eauHermans, Yannick 06 May 2019 (has links)
Le craquage photo(électro)chimique (PEC) de l’eau par l’énergie solaire est considéré comme une méthode prometteuse de production renouvelable d’hydrogène. Dans ce travail, des hétérostructures à base de BiVO4 et CuFeO2 ont été choisis pour effectuer la réaction d’oxydation et de réduction de l’eau, respectivement. Cependant, les avantages exacts des hétérostructures n’ayant pas encore été complètement élucidés. Ce travail a eu pour objectif d’examiner les propriétés de certaines hétérojonctions à base de BiVO4 et de CuFeO2 par des expériences d’interface. Dans ce but, un certain matériau a été pulvérisé sur un substrat de BiVO4ou de CuFeO2 et des mesures de spectroscopie de photoélectrons ont été effectuées à chaque étape du dépôt. Nous avons ainsi pu interpréter l’alignement des bandes entre le substrat et le matériau pulvérisé, et déterminer l’accordabilité du niveau de Fermi pour les absorbeurs étudiés.Par ailleurs, des hétérostructures à base de particules de CuFeO2 et de BiVO4 anisotropes ont été élaborées par photodéposition. Les performances de ces poudres dans des expériences de craquage photochimique de l’eau ont ensuite été déterminées. / Solar photo(electro)chemical (PEC) water splitting is regarded as a promising ways of renewable hydrogen production. In this work, heterostructures based on BiVO4 and CuFeO2were chosen to perform the water oxidation and water reduction reaction, respectively. However, the exact benefits of the contact materials in these heterostructures have not yet been completelyelucidated. Hence, we opted in this work to investigate the junction properties of certainBiVO4 and CuFeO2 based heterostructures through so called interface experiments, where by a certain contact material was step wise sputtered on to a BiVO4 or CuFeO2 substrate, performing photoelectron spectroscopy measurements in between each deposition step. In this way we could interpret the band alignment between the substrate and the contact material, as well as determine the Fermi level tunability for the studied photoabsorbers. In parallel, new anisotropic CuFeO2and BiVO4 based heterostructured powders were created through photodeposition. These powders were tested as well for their performance in photochemical water splitting.
|
206 |
Electronic properties of interfaces in polymer based organic photovoltaic cellsFrisch, Johannes 26 February 2015 (has links)
Der Schwerpunkt der vorgelegten Arbeit lag in der Bestimmung der Energieniveaus an allen Grenzflächen in bestimmten heterostrukturierten Polymer/Polymer- und Polymer/Molekül basierten Solarzellen. Die elektronische Charakterisierung erfolgte mittels Photoelektronenspektroskopie. Morphologie und Schichtdicke der aufgeschleuderten Filme wurden mit den komplementären Analysetechniken UV-vis Absorptionsspektroskopie, Rasterkraftmikroskopie sowie Röntgenphotoelektronenspektroskopie bestimmt. An der PEDT:PSS-Anode/Polymer-Grenzschicht wurden Änderungen im Vakuumniveau von bis zu 0,65 eV gemessen. Die Polymerabscheidung führte zu einer Erniedrigung der Substrataustrittsarbeit, auch wenn die Polymerionisationsenergie mehrere 100 meV größer als die ursprüngliche PEDT:PSS-Austrittsarbeit war. Eine detailierte Analyse der PEDT:PSS/Polymer Grenzflächen ausgehend von Submonolagen zu Multilagen zeigte verschiedene Ursachen für die Änderungen des Vakuumniveaus als verantwortlich. Zweitens: an Donator/Akzeptor-Grenzflächen wurden Änderungen im Vakuumniveau von bis zu 0,35 eV festgestellt, welche die solare Bandlücke (PVG) und folglich die Höchstgrenze der Leerlaufspannung (VOC) beeinflusst. Ein Vergleich aller Resultate der Grenzflächenanalyse mit den Solarzellen Parametern bestätigte PVG als obere Schranke von VOC. Der Energieunterschied zwischen PVG und VOC, der ein Maß für die Verluste in der Solarzelle darstellt, war für reine Polymerheteroübergänge größer als für Polymer/Molekül-Heterostrukturen mit einem Minimum bei 0,5 eV. Drittens: parallel zum Aufbau der Akzeptor/Kathoden-Grenzfläche veränderte sich das Vakuumniveau um ca. 1 eV, bedingt durch das Pinning des Kathoden-Ferminiveaus (EF) an unbesetzte Grenzflächenzuständen. Die energetische Lage dieser Zustände bezüglich EF entschied dabei über die Stärke der Diffusionsspannung in der Solarzelle, welche bei Beleuchtung der entstandenen Solarzellenstruktur durch eine lichtinduzierte Photospannung ausgeglichen wurde. / The main focus of this work was to provide a comprehensive picture of the energy level alignment at the multitude of interfaces that occur in selected polymer/polymer and polymer/small molecule heterojunction photovoltaic cells. The electronic characterization was performed using photoelectron spectroscopy. Morphology and thickness of spin coated thin films was investigated using a complementary technique approach employing UV-vis absorption spectroscopy, atomic force microscopy, and X ray photoelectron spectroscopy. At the PEDT:PSS anode/polymer interface vacuum level shifts up to 0.65 eV were observed. Polymer deposition decreased the substrate work function (WF even though the polymer ionization energy was several 100 meV higher as the initial PEDT:PSS WF. An in depth analysis of the PEDT:PSS/polymer interface from sub-monolayer to multilayer coverage revealed highly diverse origins for the observed vacuum level shifts. Secondly, investigations of the donor/acceptor interfaces revealed vacuum level shifts up to 0.35 eV that influence the photovoltaic gap (PVG) at the heterojunction and, therefore, the upper limit of the open circuit voltage (VOC) in the device. Correlating device data and all results of the interface analysis, PVG was finally confirmed as an upper limit for VOC. The energy difference (eV) between PVG and experimentally determined VOC, which was assigned to losses in the device, was found to be higher for all polymer heterojunctions compared to polymer/small molecule cells with a minimum at eV = 0.5 eV. Third, cathode/acceptor interface formation was accompanied by interfacial vacuum level shifts of ca. 1 eV caused by Fermi level (EF) pinning at interfacial gap states. The exact position of the acceptor pinning level with respect to EF of the anode determines the strength of the built in field in the device that was found to be fully counterbalanced by a photovoltage induced by in situ illumination of the resulting OPVC-like sample structures.
|
207 |
Structural and energetic properties of pentacene derivatives and heterostructuresSalzmann, Ingo 09 March 2009 (has links)
Das Ziel der Arbeit ist die Herstellung und die Charakterisierung von Heterostrukturen des organischen Halbleiters Pentazen (PEN) mit diversen konjugierten organischen Materialien im Hinblick auf das Anwendungspotenzial im Bereich der organischen Elektronik. Für die Untersuchung von PEN-Heterostrukturen mit (i) Fulleren (C60), (ii) Perfluoropentazen (PFP) und (iii) 6,13-Pentazenchinon (PQ) wurden mehrere komplementäre experimentelle Techniken angewendet: Röntgenbeugung, Schwingungsspektroskopie, Rasterkraftmikroskopie und Photoelektronenspektroskopie. (i) Für PEN - Heterostrukturen mit C60 wurden die elektronischen, strukturellen und morphologischen Eigenschaften mit der Leistung von organischen Solarzellen (OSZ) für geschichtete und gemischte Systeme korreliert. Dabei wurde gezeigt, dass morphologische anstatt struktureller oder energetischer Ursachen die Leistungsunterschiede der beiden untersuchten Zelltypen erklären. (ii) Strukturuntersuchungen wurden an reinen PFP-Filmen, sowie an geschichteten und gemischten Heterostrukturen mit PEN durchgeführt. Es wurde die Struktur der PFP-Dünnfilmphase gelöst und das Wachstum von PEN+PFP Mischkristallen gezeigt, welche erfolgreich angewandt wurden, um die Ionisationsenergie (IE) des Films mit dem Mischungsverhältnis durchzustimmen. Dies wurde durch die Existenz von innermolekularen polaren Bindungen (C-H und C-F für PEN und PFP) erklärt. (iii) Für reine PQ-Filme wurde die Struktur der PQ-Dünnfilmphase gelöst (ein Molekül pro Einheitszelle). Es wurde eine stark orientierungsabhängige IE von PQ und PEN gefunden und gezeigt, dass die Energieniveaulagen für die Anwendung in OSZ geeignet sind. Die Untersuchung von Mischsystemen zeigte phasensepariertes Wachstum ohne Hinweise auf Interkalation, selbst bei PQ Konzentrationen von nur 2%. Weiters wurde gezeigt, dass O2 und Wasser keine nachhaltigen Auswirkungen auf PEN-Filme zeigen, wohingegen Singlett-Sauerstoff und Ozon diese angreifen und flüchtige Reaktionsprodukte liefern. / The scope of this work is the combination of the organic semiconductor pentacene (PEN) with different conjugated organic molecules to form application relevant heterostructures in vacuum sublimed films. Using x-ray diffraction (XRD), vibrational spectroscopy, atomic force microscopy and photoelectron spectroscopy, PEN heterostructures with (i) fullerene (C60), (ii) perfluoropentacene (PFP) and (iii) 6,13-pentacenequinone (PQ) were thoroughly characterized to judge on the respective application potential in organic electronics. (i) PEN heterostructures with C60 were investigated regarding the correlation of energetic, structural and morphological properties with the performance of organic photovoltaic cells (OPVCs) for both layered and mixed structures. Morphological rather than energetic or structural issues account for performance differences of bulk-heterojunction OPVCs compared to layered devices. (ii) XRD investigations were carried out on pure PFP films, on layered and mixed heterostructures with PEN. The thin-film polymorph of PFP was solved and it is shown that blended films form a mixed crystal structure, which led to the finding that the ionization energy (IE) of organic films composed of molecules with intramolecular polar bonds (like C-H and C-F for PEN and PFP, respectively) can be tuned through the mixing ratio. (iii) A so far unknown thin-film polymorph of PQ on SiO2 substrates was solved using XRD reciprocal space mapping evidencing a loss of the herringbone arrangement known from the PQ bulk structure. For PEN heterostructures with PQ a highly molecular-orientation dependent IE and energy level offsets interesting for the use in OPVCs were found. Mixed films of PEN and PQ exhibit phase separation and no intercalation was found even at PQ concentrations as low as 2%. Finally, it is shown that O2 and water do not react noticeably with PEN, whereas singlet oxygen and ozone readily oxidize PEN films producing volatile reaction products instead of PQ.
|
208 |
Electronic and photocatalytic properties of transition metal decorated molybdenum disulfideShi, X. (Xinying) 30 August 2018 (has links)
Abstract
This thesis is dedicated to realizations and physical understanding of electronic and photocatalytic properties after decorating transition metals to the semiconducting molybdenum disulfide. Synthesized via facile wet chemical methods, the MoS₂-Au, MoS₂-Au-Ni and MoS₂-Ag-Ni composites were formed as binary or ternary compounds. The Au nanoparticles are stably joined to the MoS₂ matrix without deteriorating layered structures of the host. After introducing the Au nanoglue as a common buffer, a metallic contact is reached between Ni and MoS₂, and attributed to new electron migration channel via MoS₂ edge contact. Adapting the Ag as the buffer element can attach the Ni to the basal plane of the MoS₂ beside edge contact. The Ni-Ag-MoS₂ composite effectively splits water under visible light irradiation and produce hydrogen. The excellent photocatalytic activity is attributed to effective charge migration through dangling bonds at the MoS2-Ag-Ni alloy interface and the activation of MoS₂ basal planes. / Original papers
The original publications are not included in the electronic version of the dissertation.
W. Cao, V. Pankratov, M. Huttula, X. Shi, S. Saukko, Z. Huang, M. Zhang. Gold nanoparticles on MoS2 layered crystal flakes. Materials Chemistry and Physics, 158, 89−95 (2015). DOI: 10.1016/j.matchemphys.2015.03.041
X. Shi, S. Posysaev, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, T. Li, O. Miroshnichenko, M. Zhang, X. Wang, Z. Huang, S. Saukko, D. L. González, S. van Dijken, M. Alatalo, W. Cao. Metallic contact between MoS₂ and Ni via Au nanoglue. Small, 14, 1704526 (2018). DOI: 10.1002/smll.201704526
http://jultika.oulu.fi/Record/nbnfi-fe2018060525279
X. Shi, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, Z. Huang, G. Wang, S. Posysaev, O. Miroshnichenko, M. Alatalo, W. Cao. Quantification of bonded Ni atoms for Ni-MoS₂ metallic contact through X-ray photoemission electron microscopy. Microscopy and Microanalysis, 24, 458−459 (2018). DOI: 10.1017/S1431927618014526
http://jultika.oulu.fi/Record/nbnfi-fe2018082834233
X. Shi, M. Zhang, W. Cao, X. Wang, M. Huttula. Efficient photocatalytic hydrogen evolution via activated multilayer MoS₂. Manuscript.
X. Shi, Z. Huang, M. Huttula, T. Li, S. Li, X. Wang, Y. Luo, M. Zhang, W. Cao. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: a brief review from first-principles aspects. Crystals, 8, 24 (2018). DOI: 10.3390/cryst8010024
http://jultika.oulu.fi/Record/nbnfi-fe201802153441
|
209 |
Electronic and structural properties of interfaces between electron donor & acceptor molecules and conductive electrodesBröker, Benjamin 06 January 2011 (has links)
Die vorliegende Arbeit behandelt Fragestellungen aus der Organischen Elektronik, in der die Ladungsträgerinjektion in alle Arten von Bauteilen kritisch von der elektronischen und morphologischen Struktur der Grenzflächen zwischen Elektrode und den konjugierten organischen Molekülen (KOM) abhängt. Näher betrachtet wurden: die Energieniveauanpassung mit starken (i) Elektronendonatoren und (ii) -akzeptoren und (iii) die dichteabhängige Umorientierung einer molekularen Monolage. Zur Analyse wurden Photoelektronen- und Reflektionsabsorptionsinfrarotspektroskopie angewandt. Weitere Informationen konnten durch Modellierung mit Dichtefunktionaltheory gewonnen werden, die über Kollaborationen zur Verfügung standen. (i) Das Konzept der optimierten Energieniveauanpassung mit starken Elektronenakzeptoren konnte auf Donatoren erweitert und damit erfolgreich von der Anode zur Kathode transferiert werden. Auch hier führte der Ladungstransfer zu einem Dipol über die Grenzfläche, womit die Austrittsarbeit um bis zu 2.2 eV reduziert wurde. Als Resultat konnte die Elektroneninjektionsbarriere in nachfolgende Materialien entscheidend verringert werden (bis zu 0.8 eV). (ii) Ein bis dato unerforschter starker Elektronenaktzeptor [hexaaza-triphenylene-hexacarbonitrile (HATCN)] wurde vollständig verschiedenen Elektroden charakterisiert. HATCN zeigte dabei eine bessere Performance verglichen mit derzeit üblichen Materialien (starke Austrittsarbeitsanhebung und Verringerung der Lochinjektionsbarriere um bis zu 1.0 eV). (iii) Zusätzlich konnte mit HATCN gezeigt werden, dass eine liegende molekulare Monolage durch Erhöhung der Moleküldichte in eine stehende Monolage umgewandelt werden kann. Dies führte zu einer Änderung der chemischen Bindung zum Metall und damit zu einer starken Modifikation der elektronischen Struktur der Grenzfläche. Die vorliegende Arbeit liefert damit wertvolle Informationen für das Verständnis der Grenzfläche zwischen Elektrode und KOM in der Organischen Elektronik. / The present work is embedded in the field of organic electronics, where charge injection into devices is critically determined by the electronic and structural properties of the interfaces between the electrodes and the conjugated organic materials (COMs). Three main topics are addressed: energy level tuning with new and strong electron (i) donor and (ii) acceptor materials and (iii) the density dependent re-orientation of a molecular monolayer and its impact on the energy level alignment. To study these topics photoelectron and reflection absorption infrared spectroscopy were used. Moreover, additional information was obtained from density functional theory modelling, which was available through collaboration. (i) A concept of optimizing the energy level alignment at interfaces with strong molecular acceptors was extended to donor materials and thus successfully transferred from the anode to the cathode side of the device. Also in this case, charge transfer leads to a chemisorbed molecular monolayer. Due to the dipole across the interface, the work function of the electrode is reduced by up to 2.2 eV. Consequently, a reduced electron injection barrier into subsequently deposited materials is achieved (up to 0.8 eV). (ii) A yet unexplored strong electron acceptor material [i.e. hexaazatriphenylene- hexacarbonitrile (HATCN)] is thoroughly investigated on various surfaces. HATCN shows superior performance as electron acceptor material compared to presently used materials (e.g. work function modification and hole injection barrier reduction by up to 1 eV). (iii) Also with HATCN, the orientation of a molecular monolayer is observed to change from a face-on to an edge-on depending on layer density. This is accompanied by a re-hybridization of molecular and metal electronic states, which significantly modifies the interface electronic properties. All findings presented are valuable for the understanding of electrode-COM interfaces in organic electronics.
|
210 |
Electronic and structural properties at the interfaces between graphene and molecular acceptors/donorsChristodoulou, Christodoulos 30 September 2015 (has links)
In dieser Arbeit wurde die Austrittsarbeit von Graphen, einer vielversprechenden Elektrodenmaterial für (opto)- elektronische Bauteile, durch die Adsorption von luftbeständigen konjugierten organischen Molekülen (KOMs), welche als Akzeptoren und Donatoren fungieren, modifiziert. Die Eigenschaften der Valenz- und Rumpfniveaus sowie die Austrittsarbeitsmodifikation der vakuumverdampften KOMs wurden mit Photoelektronenspektroskopie (PES) untersucht, während die Orientierung der KOMs mit Röntgen-Nahkanten-Absorptions-Spektroskopie (NEXAFS) aufgeklärt wurde. Die Austrittsarbeit von Graphen auf Quartz (G/Qu) lässt sich auf maximal 5.7 eV und minimal 3 eV anpassen, welches aus einem Ladungstransfer direkt an der Grenzfläche resultiert, der keine Ausbildung von kovalenten Bindungen zwischen der molekularen Monolage und dem Graphen beinhaltet. Zudem, für den starken molekularen Akzeptor Hexaazatriphenylen-Hexacarbonitril (HATCN) verläuft die Austrittsarbeitserhöhung über eine Orientierungsänderung der Moleküle im Monolagenbereich. Für alle anderen auf G/Qu abgeschiedenen Akzeptoren (Donatoren) wurde beobachtet, dass der Ladungstransfer eine positive (negative) Oberflächen-ladungsdotierung der Graphen-Schicht bewirkt, welches in einer Austrittsarbeitserhöhung (-erniedrigung) resultiert. Letztere ließ sich jeweils in zwei Beiträge zerlegen: (a) Verschiebung des Vakuumniveaus durch einen Grenzflächendipol an der KOM/Graphen-Grenzfläche und (b) Verschiebung des Fermi-Niveaus durch Oberflächenladungstransferdotierung der Graphen-Schicht. Weiterhin wurde der molekulare Akzeptor Hexafluoro-tetracyano napththoquinodimethan (F6TCNNQ) sowohl auf G/Qu als auch auf Graphen auf Kupfer abgeschieden, wobei sich herausstellte, dass der Ladungstransfer im ersteren Fall vom Graphen stammt, und im letzteren von der Kupferunterlage. Die Ergebnisse werden von Dichtefunktionaltheorieberechnungen gestützt und tragen erheblich zum Verständnis von Graphen/KOM-Grenzflächen bei. / In this thesis, the work function of graphene, a promising electrode for (opto)electronic devices was modified by adsorption of air-stable conjugated organic molecules (COMs) that act as strong molecular acceptors or donors. The valence and core level properties, together with the work function modification of the vacuum-deposited COMs on graphene were investigated with photoelectron spectroscopy (PES), while the orientation of COMs was studied with near edge X-ray fine structure spectroscopy (NEXAFS). The work function of graphene-on-quartz (G/Qu) is modified up to 5.7 eV and down to 3 eV as a result of charge transfer (CT) occurring right at the interface, which does not invoke covalent bond formation between the molecular monolayer and the graphene. In addition to the CT, in the case of the molecular acceptor hexaazatriphenylene-hexacarbonitrile (HATCN), the work function increase proceeded via a density-dependent re-orientation of the molecule in the monolayer regime. For all the other tested molecular acceptors (donors) deposited on graphene-on-quartz, the CT was observed to induce positive (negative) surface CT doping of the graphene layer, leading to a work function increase (decrease) and was disentangled into two contributions: (a) shift of the Vacuum level due to the formation of an interface dipole at the COM/graphene interface and (b) shift of the Fermi level of the graphene due to the surface CT doping. Additionally, the molecular acceptor hexafluoro-tetracyanonapththoquinodimethane (F6TCNNQ) was deposited on both G/Qu and graphene-on-copper, where the CT was found to originate from graphene and copper support respectively. The findings were supported by density functional theory calculations and significantly add to a fundamental understanding of graphene/COM interfaces.
|
Page generated in 0.0847 seconds