• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés structurales et électroniques des nanofil semiconducteurs III-V / Structural and electronic study of semiconductor nanowires III-V

Hajlaoui, Chahira 05 June 2014 (has links)
Les nanofils semiconducteurs suscitent un vif intérêt tant pour leurs propriétés fondamentales originales que pour leurs applications potentielles en opto- et nano-Électronique. La physique des nanofils et en particulier des matériaux à la base est difficile à caractériser. Dans ce contexte, la simulation numérique peut apporter des réponses quantitatives aux problèmes posés par ces objets et aider à explorer leur potentiel. En particulier, leur cristallisation se fait dans une phase hexagonale wurtzite mais avec des fautes d’empilement qui donnent lieu à des insertions de séquence cubique. La structure cubique blende de zinc a été largement étudiée, les différents aspects physiques des semiconducteurs l’adoptant sont bien illustrés dans la littérature. Par contre, ils sont mal compris en phase wurtzite. C’est pourquoi, l’étude des propriétés structurales et électroniques des cristaux III-V et hétérostructures wurtzite a fait l’objet du présent travail. En particulier, je me suis intéressée à déterminer les paramètres structuraux et électroniques d’ InAs et InP. Pour aborder ces problématiques il convient de trouver une méthode théorique adaptée. Dans ce contexte, les modélisations ab initio permettent d’explorer les propriétés globales sans une connaissance expérimentale à priori des systèmes étudiés. Elles reposent sur la résolution variationnelle de l’équation de Schrödinger qui est lourde d’un point de vue computationnel. Il existe donc toute une hiérarchie de modèles plus ou moins sophistiqués qui approchent plus ou moins la solution exacte du problème. Dans le cadre de ce travail, j’ai utilisé la théorie de la fonctionnelle de la densité qui reproduit les résultats expérimentaux de structures mais peine à évaluer les niveaux énergétiques vides. Cette difficulté est due à la définition des effets à N corps et notamment aux effets de corrélation entre les électrons. L’erreur dans l’évaluation des énergies est corrigée grâce à la correction apportée par l’approximation GW ou les fonctionnelles hybrides. Ainsi, j’ai pu obtenir des structures électroniques correctes et exploitables afin de déterminer les potentiels de déformation. Il est notamment possible de faire varier la composition des nanofils de long de leur axe de croissance afin d’y introduire des jonctions p-N, des boîtes quantiques ou des barrières tunnel. Ces hétérostructures offrent de multiples opportunités : la faisabilité de transistors, de diodes à effet tunnel résonant ou de dispositifs à un électron basés sur les nanofils de silicium ou de III-V a ainsi déjà été démontrée. Ces matériaux permettent de réaliser des hétérostructures inédites car ils peuvent s’accommoder de forts désaccords de maille en déformant leur surface. La relaxation des contraintes structurales a toutefois un impact important sur leurs propriétés électroniques et optiques. Un des paramètres importants pour bien comprendre le comportement de ces structures quantiques est l’offset électronique ou la discontinuité énergétique. Il a été calculé pour le système InAs/InP et confronté à des études expérimentales suivant les directions de croissance. / Semiconductor nanowires are attracting much attention both for their original properties and their potential applications in opto- and nanoelectronics. The physics of nanowires and in particular materials at the base is poorly understood and difficult to characterize. In this context, the numerical simulation can provide quantitative answers to the problems posed by these objects and help to explore their potential. In particular, their crystallization is in a wurtzite (WZ) hexagonal phase but with stacking faults that result in insertions of cubic sequences. The zinc blende structure has been widely studied; the various structural, electronic and optical properties of semiconductor materials adopting this structure are well illustrated and discussed in the literature. On the other side, these properties are poorly understood for WZ. Study of WZ III-V materials and related heterostructures is the subject of this work. In particular, I have simulated the structural and electronic properties of relaxed InAs and InP and under strain condition. ab initio modeling or first principle may explore structural, electronic and dynamics of matter without any experimental prior knowledge. Here, DFT calculations are performed to model the structural and electronic properties of WZ InAs and InP. The error in the evaluation of conduction energy states has been circumvented with the use of GW approximation and hybrid functionals. Finally, I have studied band offset alignment and polarizations effects in InAs/InP WZ system.
2

Interface analysis and development of BiVO4 and CuFeO2 heterostructures for photochemical water splitting / Analyse d’interface et développement des hétérostructures de BiVO4 et CuFeO2 pour le craquage photochimique de l’eau

Hermans, Yannick 06 May 2019 (has links)
Le craquage photo(électro)chimique (PEC) de l’eau par l’énergie solaire est considéré comme une méthode prometteuse de production renouvelable d’hydrogène. Dans ce travail, des hétérostructures à base de BiVO4 et CuFeO2 ont été choisis pour effectuer la réaction d’oxydation et de réduction de l’eau, respectivement. Cependant, les avantages exacts des hétérostructures n’ayant pas encore été complètement élucidés. Ce travail a eu pour objectif d’examiner les propriétés de certaines hétérojonctions à base de BiVO4 et de CuFeO2 par des expériences d’interface. Dans ce but, un certain matériau a été pulvérisé sur un substrat de BiVO4ou de CuFeO2 et des mesures de spectroscopie de photoélectrons ont été effectuées à chaque étape du dépôt. Nous avons ainsi pu interpréter l’alignement des bandes entre le substrat et le matériau pulvérisé, et déterminer l’accordabilité du niveau de Fermi pour les absorbeurs étudiés.Par ailleurs, des hétérostructures à base de particules de CuFeO2 et de BiVO4 anisotropes ont été élaborées par photodéposition. Les performances de ces poudres dans des expériences de craquage photochimique de l’eau ont ensuite été déterminées. / Solar photo(electro)chemical (PEC) water splitting is regarded as a promising ways of renewable hydrogen production. In this work, heterostructures based on BiVO4 and CuFeO2were chosen to perform the water oxidation and water reduction reaction, respectively. However, the exact benefits of the contact materials in these heterostructures have not yet been completelyelucidated. Hence, we opted in this work to investigate the junction properties of certainBiVO4 and CuFeO2 based heterostructures through so called interface experiments, where by a certain contact material was step wise sputtered on to a BiVO4 or CuFeO2 substrate, performing photoelectron spectroscopy measurements in between each deposition step. In this way we could interpret the band alignment between the substrate and the contact material, as well as determine the Fermi level tunability for the studied photoabsorbers. In parallel, new anisotropic CuFeO2and BiVO4 based heterostructured powders were created through photodeposition. These powders were tested as well for their performance in photochemical water splitting.
3

Metal oxide heterostructures for efficient photocatalysts / Hétérostuctures à base d'oxydes métalliques semi-conducteurs pour de nouveaux photocatalyseurs performants

Uddin, Md. Tamez 16 September 2013 (has links)
Les processus photocatalytiques à la surface d’oxydes métalliques semi-conducteurs font l’objet d’intensesrecherches au niveau mondial car ils constituent des alternatives efficaces, respectueuses de l’environnement etpeu coûteuses aux méthodes conventionnelles dans les domaines de la purification de l’eau et de l’air, et de laproduction « verte » d’hydrogène. Cependant, certaines limitations pour atteindre des efficacitésphotocatalytiques élevées ont été mises en évidence avec les matériaux semiconducteurs classiques du fait de larecombinaison rapide des porteurs de charge générés par illumination. Le développement de photocatalyseurs àbase d’héterostuctures obtenues par dépôt de métaux à la surface de matériaux semiconducteurs ou parassociation de deux semiconducteurs possédant des bandes d’énergie bien positionnées devrait permettre delimiter ces phénomènes de recombinaison via un transfert de charge vectoriel. Dans ce contexte, trois typesd’hétérostructures telles que des nanomatériaux à base d’hétérojonction semiconducteur n/semiconducteur n(SnO2/ZnO), metal/semiconducteur n (RuO2/TiO2 and RuO2/ZnO) et semiconducteur p/semiconducteur n(NiO/TiO2) ont été synthétisées avec succès par différentes voies liquides. Leur composition, leur texture, leurstructure et leur morphologie ont été caractérisées par spectroscopies FTIR et Raman, par diffraction des rayonsX, microscopie électronique en transmission (MET) et porosimétrie de sorption d’azote. Par ailleurs, unecombinaison judicieuse des données issues de mesures effectuées par spectroscopie UV-visible en réflexiondiffuse (DRS) et par spectroscopies de photoélectrons X (XPS) et UV (UPS) a permis de déterminer lediagramme d’énergie des bandes pour chaque système étudié. Les catalyseurs ainsi obtenus ont conduit à desefficacités photocatalytiques plus élevées qu’avec le dioxyde de titane P25 pour la dégradation de colorantsorganiques (bleu de méthylène, l’orangé de méthyle) et la production d’hydrogène. En particulier, lesnanocomposites RuO2/TiO2 et NiO/TiO2 contenant une quantité optimale de RuO2 (5 % en masse) et de NiO(1% en masse), respectivement, ont conduit aux efficacités photocatalytiques les plus importantes pour laproduction d’hydrogène. Ces excellentes performances photocatalytiques ont été interprétées en termesd’alignement adéquat des bandes d’énergies des matériaux associé à des propriétés texturales et structuralesfavorables. Ce concept de photocatalyseurs à base d’hétérojonctions semiconductrices d’activité élevée devrait àl’avenir trouver des débouchés industriels dans les domaines de l’élimination de l’environnement de composésorganiques indésirables et de la production « verte » d’hydrogène. / Photocatalytic processes over semiconducting oxide surfaces have attracted worldwide attention aspotentially efficient, environmentally friendly and low cost methods for water/air purification as well as forrenewable hydrogen production. However, some limitations to achieve high photocatalytic efficiencies havebeen found due to the fast recombination of the charge carriers. Development of heterostucture photocatalystsby depositing metals on the surface of semiconductors or by coupling two semiconductors with suitable bandedge position can reduce recombination phenomena by vectorial transfer of charge carriers. To draw newprospects in this domain, three different kinds of heterostructures such as n-type/n-type semiconductor(SnO2/ZnO), metal/n-type semiconductor (RuO2/TiO2 and RuO2/ZnO) and p-type/n-type semiconductor(NiO/TiO2) heterojunction nanomaterials were successfully prepared by solution process. Their composition,texture, structure and morphology were thoroughly characterized by FTIR, X-ray diffraction (XRD), Ramanspectroscopy, transmission electron microscopy (TEM) and N2 sorption measurements. On the other hand, asuitable combination of UV–visible diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy(XPS) and ultraviolet photoemission spectroscopy (UPS) data provided the energy band diagram for eachsystem. The as-prepared heterojunction photocatalysts showed higher photocatalytic efficiency than P25 TiO2for the degradation of organic dyes (i.e. methylene blue and methyl orange) and the production of hydrogen.Particularly, heterostructure RuO2/TiO2 and NiO/TiO2 nanocomposites with optimum loading of RuO2 (5 wt %)and NiO (1 wt %), respectively, yielded the highest photocatalytic activities for the production of hydrogen.These enhanced performances were rationalized in terms of suitable band alignment as evidenced by XPS/UPSmeasurements along with their good textural and structural properties. This concept of semiconductingheterojunction nanocatalysts with high photocatlytic activity should find industrial application in the future toremove undesirable organics from the environment and to produce renewable hydrogen.

Page generated in 0.1129 seconds