• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemische Charakterisierung von diagnostischen Glykan-Oberflächen vor und nach Interaktion mit Modell-Analyten

Nietzold, Carolin 05 February 2020 (has links)
Das Hauptanliegen dieser Arbeit war es valide chemische Verfahren für die Optimierung der Gesamtleistung von Glykan-Microarrays bereitzustellen. Dafür erfolgte eine gründliche Untersuchung jedes einzelnen Prozessschritts innerhalb der Arrayproduktion durch Anwendung komplementärer Methoden der chemischen Oberflächenanalytik. Mit Hilfe von fortgeschrittenen Verfahren der Elektronen-Spektroskopie für die chemische Anlayse (ESCA/XPS) wurden valide quantitative Daten bei der chemischen Charakterisierung der Oberflächen erhalten die mit den häufig eingesetzten qualitativen bzw. indirekten Verfahren (z.B. Kontaktwinkel Goniometrie und Fluoreszenz-Spektroskopie) so nicht erhalten werden können. Die robuste Anbindung von Glykanen auf der Substratoberfläche ist Voraussetzung für eine reproduzierbare Anwendung in der Diagnostik aber auch für die Entwicklung valider quantitativer Charakterisierungsmethoden zur Bewertung der Effizienz der Immobilisierungsreaktionen. Ein Schwerpunkt der Arbeit lag in der Charakterisierung und Optimierung der Glykananbindung an amin-reaktive Oberflächen. Hierzu wurden z.B. spezielle Glykane mit Fluorlabel auf epoxid-funktionalisierten Siliziumoberflächen immobilisiert. Eine Quantifizierung der angebundenen Glykane ist zum Beispiel über die Bestimmung der CF3-Gruppe im hochaufgelösten C1s XPS Spektrum möglich. Die Interaktionen Sonde-Analyt wurden modellhaft mit immobilisierten Glykanen und dem Lektin Concanavalin A mit Verfahren der chemischen Oberflächenanalytik untersucht. Neben der chemischen Charakterisierung frisch präparierter Glykansonden wurde auch das Alterungsverhalten der Glykan-Microarrays untersucht. / The objective of this research is to sidestep many of the initial and current problems of glycan microarray based devices by using new analytical approaches to control molecular engineering. For this purpose, a thorough investigation of each individual step in the array production is carried out by applying complementary methods of surface chemical analysis. New fluorophore-free protocols based on methods of surface analysis as XPS will be developed and validated to enable glycan microarray performance optimization. The advantage of these methods is the direct quantitative access to chemical bonds at high lateral resolution. In contrast to the frequently used qualitative or indirect methods (e.g. contact angle goniometry and fluorescence spectroscopy), valid quantitative data are obtained. The robust binding of glycans on the substrate surface, is a prerequisite for a reproducible application in the diagnostics but also for the development of valid quantitative characterization methods for the evaluation of the efficiency of the immobilization reactions. One focus of the work was the characterization and optimization of the glycan binding to popular amine-reactive surfaces. For this purpose, specific glycans with fluorine-label were immobilized on epoxide-functionalized silicon surfaces. A quantification of the attached glycan molecules is possible, for example, by determining the amount of CF3 groups using the high-resolution C1s XPS spectrum. The interactions between model probe (glycan molecules) and model analyte (lectin concanavalin A) were investigated using powerful methods surface chemical analysis. In addition to the chemical characterization of freshly prepared glycan probes, the aging behavior of the glycan microarrays was also investigated.
2

Electronic and structural properties of interfaces between electron donor & acceptor molecules and conductive electrodes

Bröker, Benjamin 06 January 2011 (has links)
Die vorliegende Arbeit behandelt Fragestellungen aus der Organischen Elektronik, in der die Ladungsträgerinjektion in alle Arten von Bauteilen kritisch von der elektronischen und morphologischen Struktur der Grenzflächen zwischen Elektrode und den konjugierten organischen Molekülen (KOM) abhängt. Näher betrachtet wurden: die Energieniveauanpassung mit starken (i) Elektronendonatoren und (ii) -akzeptoren und (iii) die dichteabhängige Umorientierung einer molekularen Monolage. Zur Analyse wurden Photoelektronen- und Reflektionsabsorptionsinfrarotspektroskopie angewandt. Weitere Informationen konnten durch Modellierung mit Dichtefunktionaltheory gewonnen werden, die über Kollaborationen zur Verfügung standen. (i) Das Konzept der optimierten Energieniveauanpassung mit starken Elektronenakzeptoren konnte auf Donatoren erweitert und damit erfolgreich von der Anode zur Kathode transferiert werden. Auch hier führte der Ladungstransfer zu einem Dipol über die Grenzfläche, womit die Austrittsarbeit um bis zu 2.2 eV reduziert wurde. Als Resultat konnte die Elektroneninjektionsbarriere in nachfolgende Materialien entscheidend verringert werden (bis zu 0.8 eV). (ii) Ein bis dato unerforschter starker Elektronenaktzeptor [hexaaza-triphenylene-hexacarbonitrile (HATCN)] wurde vollständig verschiedenen Elektroden charakterisiert. HATCN zeigte dabei eine bessere Performance verglichen mit derzeit üblichen Materialien (starke Austrittsarbeitsanhebung und Verringerung der Lochinjektionsbarriere um bis zu 1.0 eV). (iii) Zusätzlich konnte mit HATCN gezeigt werden, dass eine liegende molekulare Monolage durch Erhöhung der Moleküldichte in eine stehende Monolage umgewandelt werden kann. Dies führte zu einer Änderung der chemischen Bindung zum Metall und damit zu einer starken Modifikation der elektronischen Struktur der Grenzfläche. Die vorliegende Arbeit liefert damit wertvolle Informationen für das Verständnis der Grenzfläche zwischen Elektrode und KOM in der Organischen Elektronik. / The present work is embedded in the field of organic electronics, where charge injection into devices is critically determined by the electronic and structural properties of the interfaces between the electrodes and the conjugated organic materials (COMs). Three main topics are addressed: energy level tuning with new and strong electron (i) donor and (ii) acceptor materials and (iii) the density dependent re-orientation of a molecular monolayer and its impact on the energy level alignment. To study these topics photoelectron and reflection absorption infrared spectroscopy were used. Moreover, additional information was obtained from density functional theory modelling, which was available through collaboration. (i) A concept of optimizing the energy level alignment at interfaces with strong molecular acceptors was extended to donor materials and thus successfully transferred from the anode to the cathode side of the device. Also in this case, charge transfer leads to a chemisorbed molecular monolayer. Due to the dipole across the interface, the work function of the electrode is reduced by up to 2.2 eV. Consequently, a reduced electron injection barrier into subsequently deposited materials is achieved (up to 0.8 eV). (ii) A yet unexplored strong electron acceptor material [i.e. hexaazatriphenylene- hexacarbonitrile (HATCN)] is thoroughly investigated on various surfaces. HATCN shows superior performance as electron acceptor material compared to presently used materials (e.g. work function modification and hole injection barrier reduction by up to 1 eV). (iii) Also with HATCN, the orientation of a molecular monolayer is observed to change from a face-on to an edge-on depending on layer density. This is accompanied by a re-hybridization of molecular and metal electronic states, which significantly modifies the interface electronic properties. All findings presented are valuable for the understanding of electrode-COM interfaces in organic electronics.
3

Electronic structure of heterojunction interfaces investigated by photoelectron spectroscopy

Wang, Rongbin 06 March 2020 (has links)
Heteroübergänge, die aus (in)organischen/(in)organischen Materialien bestehen, spielen eine entscheidende Rolle für die Leistung optoelektronischer Bauteile. Der Schwerpunkt dieser Arbeit liegt hauptsächlich auf der elektronischen Struktur dieser Heteroübergänge, insbesondere der Ausrichtung der Energieniveaus (ELA) an verschiedenen Heteroübergangsschnittstellen, die mit Photoelektronenspektroskopie gemessen wird. Zusätzlich wird die Geräteleistungen mit den PES-Ergebnissen verglichen, um weitere Verbesserung zu ermöglichen. MoOx/n-Si und PEDOT:PSS/n-Si Heteroverbindungen sind aktive Schichten von Solarzellen und mit PES kann direkt, die Groessen der Bandverbiegung auf der n-Si-Seite gemessen werden. Obwohl die Bandverbiegung für einen MoOx/n-Si-Heteroübergang (0,80 eV) größer ist als die von PEDOT:PSS/n-Si (0,71 eV), weisen die entsprechenden Solarzellen (MoOx/n-Si) aufgrund der mangelhaften Passivierung von n-Si und der geringeren Dünnschichtleitfähigkeit von MoOx einen schlechteren Wirkungsgrad (auf. Die Untersuchung der elektronischen Struktur Duenner Schichten aus Perowskit (CH3NH3PbI3) oder Vanadiumdioxid zeigt, dass die Austrittsarbeit durch die Oberflächenkomponenten dramatisch beeinflusst werden kann, wodurch die ELA mit dem prototypischen organischen Lochtransportmaterial N,N′-di(1-naphthyl)-N,N′-diphenylbenzidin (NPB) variiert wird. Bei den CH3NH3PbI3-Dünnschichten, die mit verschiedenen Methoden hergestellt werden, korreliert das Verhältnis der beiden Kohlenstoffarten auf der Oberfläche mit der Variation der Austrittsarbeit. Wie bei der VO2-Oberfläche kann die Austrittsarbeit durch Ändern des Verhältnisses von Sauerstoff und Vanadium auf der Oberfläche von 4,4 eV auf 6,7 eV abgestimmt werden. Belege für eine starke Ferminiveau-Pinning und die damit verbundene Energieniveaubiegung in NPB finden sich für stöchiometrisches VO2 (WF=6,7 eV), wodurch ein ohmscher Kontakt für Löcher entsteht, der als Lochinjektionskontakt in Bauteilen verwendet werden kann. / Heterojunctions, comprised by (in)organic/(in)organic materials, play a crucial role in determining the performance of optoelectronic devices. The focus of this work is mainly on the electronic structure of heterojunctions present in the optoelectronic devices, in particular the energy level alignment (ELA) at different heterojunction interfaces, by employing photoelectron spectroscopy (PES). Furthermore, interface energetics are correlated with the device performances in order to guide the future improvement. MoOx/n-Si and PEDOT:PSS/n-Si heterojunctions are active layers in solar cells and PES measurements give direct band bending magnitudes generated at the n-Si. Even though the band bending magnitude of the MoOx/n-Si heterojunction (0.80 eV) is larger than that of the PEDOT:PSS/n-Si (0.71 eV), the corresponding solar cells (MoOx/n-Si) show inferior power conversion efficiency (PCE), due to the deficient passivation of n-Si and lower thin film conductivity of MoOx. The investigations of electronic structure of perovskite (CH3NH3PbI3) and vanadium dioxide (VO2) thin films show that the work function can be dramatically affected by the surface components, which subsequently varies the ELA with the deposited prototypical organic hole transport material N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (NPB). As for the CH3NH3PbI3 thin films fabricated by different methods, the ratio of the two C 1s species (CH3NH3+ and CH3+) on the surface correlates with variation of the work function. As for the VO2 thin film, the work function can be tuned from 4.4 eV to 6.7 eV by changing the ratio of oxygen and vanadium on the surface. Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found for the clean and stoichiometric VO2 (WF=6.7 eV), rendering an Ohmic contact for holes, which can be utilized as a hole injection contact into the devices.
4

Development of dual mode labels for the quantitative analysis of surface functional groups with XPS and fluorescence

Fischer, Tobias 31 March 2017 (has links)
In dieser Arbeit sollte eine Derivatisierungsmethode entwickelt werden, die die duale Quantifizierung funktioneller Gruppen an Oberflächen mittels Röntgenphotoelektronenspektroskopie (XPS) und Fluoreszenz ermöglicht. Verschiedene Farbstoffe, die robuste Fluoreszenzeigenschaften mit hohen Fluorgehalten für XPS kombinieren, wurden auf ihre selektive Reaktion mit Aminogruppen getestet und der Prototyp einer tiefergehenden Analyse auf einer Oberfläche unterzogen. Durch Fluoreszenzlöschung konnten die Möglichkeiten der bimodalen Analyse nur begrenzt abgeschätzt werden, obwohl in XPS und Fluoreszenz intensive Signale gemessen wurden. Die Herstellung der Modelloberflächen mittels Gasphasenabscheidung von Silanen konnte durch Kontaktwinkelmessungen schrittweise optimiert werden. Die Kombination zweier Monoalkoxysilane ermöglichte die Herstellung von Oberflächen mit variabler Funktionalgruppendichte. Nach Reaktion mit dem dualen Marker ließen sich die Messungen aus XPS und Fluoreszenz mindestens über eine Größenordnung korrelieren. Durch Synchrotron-XPS (SR-XPS) und Röntgenfluoreszenz unter Totalreflektion (TXRF) konnte eine absolute und rückführbare Quantifizierung erzielt werden. Weitere Modelloberflächen auf Basis von Trialkoxysilanen zeigten, dass bei anwendungsnahen Proben Fluoreszenzlöschung auftritt. Diese konnte in einem gewissen Maße mittels Fluoreszenzlebensdauer berechnet werden. Darüberhinaus konnte mit der Photometrie eine unabhängige Methode gefunden werden, die die Quantifizierung des Farbstoffs an der Oberfläche in hoher Präzision ermöglicht und mit Hilfe der XPS auch der funtionellen Gruppen. Die Cavity Ring-Down Spektroskopie (CRDS) wurde als Laserbasierte Methode zur empfindlichen und ortsaufgelösten Messung der Absorption auf transparenten Substraten untersucht und erste vielversprechende Ergebnisse gewonnen. Weiterhin wurde ein modulares Farbstoffsystem entwickelt, das sowohl Variation der spektralen als auch der Bindungseigenschaften erlaubt. / This work aimed on the development of dual-mode labelling method that combines X-ray photoelectron spectroscopy (XPS) with fluorescence measurements for surface functional group quantification. Label dyes combining robust fluorescence properties with high fluorine contents were investigated towards their selective reaction with surface amino groups and the lead candidate subjected to detailed analysis on a surface. Fluorescence quenching precluded a detailed investigation of the capabilities of dual-mode labelling, despite providing sufficient signal in XPS and fluorescence scanning. The fabrication of surfaces using vapour deposition (VD) of silanes in toluene was optimized under aid of contact angle measurements. Binary mixtures of mono-alkoxy silanes were used to prepare surfaces with variable functional group density. Treatment with the label dye showed that XPS and fluorescence provide a linear overlap in signal generation over at least one order of magnitude. The combination of synchrotron radiation XPS (SR-XPS) and total reflection X-ray fluorescence spectroscopy (TXRF) provided an absolute and traceable quantification . Different model surfaces based on trialkoxy silanes showed strong fluorescence quenching. A fluorescence lifetime based correction was developed to account for such quenching effects. Additionally, the application of spectrophotometry provided a independent method of quantification for the surface bound dye and in combination with information obtained from XPS, to determine the surface functional group density. With cavity ring-down spectroscopy (CRDS), a laser based technique for highly sensitive and spatially resolved absorption measurements on transparent substrates could be developed and applied in a proof-of-concept. A modular system for the fabrication of label dyes with adjustable spectral properties and different binding sites was investigated using prototype candidates to prove the general applicability of such systems.
5

Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology

Müller, Anja 07 April 2022 (has links)
Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. / Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the articles in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis.
6

Spectro-microscopic investigation of Fe-oxide based model catalysts and instrumental development

Genuzio, Francesca 03 June 2016 (has links)
Diese Arbeit untersucht Fe-Oxid-Systeme mit Hilfe einer Kombination aus Mikroskopie (LEEM, Röntgen PEEMs), Beugung (LEED) und Spektroskopie (XPS) und berichtet über die elektronenoptische Entwicklung adaptiver Optiken und Aberrationskorrekturen für einen elektrostatischen abbildenden Energieanalysator. Experimentell untersuchten wir Magnetit und Hämatit Dünnschichten. Ihre Kristallstruktur, Stöchiometrie sowie deren Oberflächenterminierung können durch spezielle Herstellungsverfahren eingestellt werden. Unter Ausnutzung der Echtzeit-Beobachtung mit Mikroskopie, Beugung und Spektroskopie untersuchten wir (a) die Oberflächenmodifikationen von Fe3O4 und α-Fe2O3-Dünnschichten durch Fe Ablagerung; (b) die reversible Phasenumwandlung Fe3O4 ↔ α-Fe2O3 unter verschiedenen Oxidationsbedingungen; (c) die Bildung der metastabilen γ-Fe2O3-Phase und (d) die Wechselwirkung von Fe3O4 und α-Fe2O3 Oberflächen mit unterstützten Pt-Nanopartikeln. Es wurde ein Algorithmus entwickelt, um den LEEM Bildkontrast für inhomogene 2D Oberflächen zu simulieren. Abschließend wird das Design eines Energiefilter-System vorgestellt, das in ein PEEM/LEEM Mikroskop der neuen Generation eingebaut werden wird. Das System basiert auf dem gleichen Abbildungsprinzip wie der magnetische Ω-Filter, der erfolgreich im aktuellen SMART Mikroskop eingesetzt wird. Das neue Instrument zielt auf die Verbesserung der Orts- und Energieauflösung im XPEEM (5 nm und 70 meV). Die Mehrzahl der möglichen Aberrationen zweiter Ordnung wird durch die intrinsische Symmetrie selbstkompensiert. Die Wirkung der anderen Aberrationen wird durch ein geeignetes Design der Verzögerungs- und Beschleunigungsoptiken kombiniert mit einer optimierten Passenergie reduziert. Darüber hinaus kompensieren zusätzliche Hexapole die restlichen dominierenden Aberrationen, wodurch eine Orts- und Energieauflösung besser als 2 nm bzw. 75 meV erreicht wird. / This work presents the investigation of Fe-oxide systems, combining microscopy (LEEM, X-PEEM), diffraction (LEED) and spectroscopy (XPS), and the electron-optical development of adaptive optics and aberration corrections for an electrostatic imaging energy analyzer. Experimentally, we studied magnetite (Fe3O4) and hematite (α-Fe2O3) thin films. Their crystal structure, stoichiometry as well as their surface termination can be tuned by special preparation procedures. Taking advantage of real time observation with microscopy, diffraction and spectroscopy, we investigated (a) the surface modifications of Fe3O4 and α-Fe2O3 thin films by Fe deposition; (b) the reversible phase transformation Fe3O4 ↔ α-Fe2O3 under different oxidation conditions; (c) the formation of the metastable γ-Fe2O3 phase and (d) the interaction of Fe3O4 and α-Fe2O3 surfaces with supported Pt nanoparticles . An algorithm was developed to simulate the LEEM image contrast for inhomogeneous 2D surfaces. The possible application to experimental data and the limitation will be discussed. Finally, the design of an energy filtering system is presented, which will be implemented in a new generation PEEM/LEEM microscope. The system bases on the same imaging principle as the magnetic Ω-filter, successfully implemented in the actual SMART microscope. The new instrument aims for the improvement of lateral and energy resolution in X-PEEM (5 nm and 70 meV, respectively). The majority of the possible second order aberrations are self-compensated by intrinsic symmetry. The effect of the other aberrations is reduced by an adequate design for the deceleration-acceleration optics in combination with optimized pass energy. Furthermore, additional hexapole multipoles compensate for the residual dominating aberrations, yielding in the lateral resolution and energy resolution better than 2 nm and 75 meV, respectively.

Page generated in 0.0228 seconds