• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules

Álvarez Ruiz, Jesús January 2004 (has links)
A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n>2) of the hydrogen molecule
2

Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules

Álvarez Ruiz, Jesús January 2004 (has links)
<p>A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. </p><p>Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. </p><p>Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. </p><p>Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. </p><p>Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. </p><p>Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. </p><p>Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. </p><p>Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n>2) of the hydrogen molecule</p>
3

Three-photon Absorption Process In Organic Dyes Enhanced By Surface Plasmon Resonance

Cohanoschi, Ion 01 January 2006 (has links)
Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of σ3' are small (10-81 cm6s2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the -electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective σ3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds, respectively. We proved that the enhancement is a direct consequence of the electric field enhancement at a metal/buffer interface. Next, motivated by the demands for new materials with enhanced nonlinear optical properties, we studied the 3PA of Hematoporphyrin IX and J-aggregate supramolecular systems. As a result, we were able to propose the use of 3PA in photodynamic therapy using Photofrin, the only drug approved by the FDA for PDT.

Page generated in 0.131 seconds