• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of nanoemulsion liquid chromatography (NELC) for the analysis of inhaled drugs : investigation into the application of oil-in-water nanoemulsion as mobile phase for determination of inhaled drugs in dosage forms and in clinical samples

Althanyan, Mohammed Saad January 2011 (has links)
There has been very little research into the bioanalytical application of Microemulsion High Performance Liquid Chromatography (MELC), a recently established technique for separating an active pharmaceutical ingredient from its related substances and for determining the quantity of active drug in a dose. Also, the technique is not good at separating hydrophilic drugs of very similar chemical structures. Different phase diagrams of oil (octane or ethyl acetate), co-surfactant (butanol), surfactant (sodium dodecyl sulphate (SDS) or Brij-35) and buffer (Phosphate pH 3) were developed and several nanoemulsion mobile phases identified. Nanoemulsion mobile phase that is, prepared with SDS, octane, butanol and a phosphate buffer, failed to separate hydrophilic compounds with a very close chemical structure, such as terbutaline and salbutamol. A nanoemulsion mobile phase containing a non-ionic surfactant (Brij-35) with ethyl acetate, butanol and a phosphate buffer, was, however, successful in achieving a base line separation, and the method was validated for simultaneous determination of terbutaline and salbutamol in aqueous and urine samples. An oil-in-water (O/W) NELC method was developed and validated for the determination of formoterol in an Oxis® Turbuhaler® using pre-column fluorescence derivatisation. Although the same mobile phase was extended for separation of formoterol in urine, the formoterol peak's overlap with endogenous peaks meant that fluorescence detection could not determine formoterol in urine samples. Solid phase extraction, concentrating the final analyte 40 times, enabled determination of a low concentration of formoterol in urine samples by UV detection. The method was validated and an acceptable assay precision %CV <4.89 inter-day and %CV <2.33 intra-day was achieved. Then after the application of O/W nanoemulsion mobile phase for HPLC was extended for the separation of lipophilic drugs. The nanoemulsion liquid chromatography (NELC) method was optimised for the determination of salmeterol and fluticasone propionate in good validation data was achieved. This thesis shows that, in general, the performance of O/W NELC is superior to that of conventional High Performance Liquid Chromatography (HPLC) for the analysis of both hydrophilic and lipophilic drugs in inhaled dosage formulations and urine samples. It has been shown that NELC uses cheaper solvents and that analysis time is faster for aqueous and urine samples. This considerable saving in both cost and time will potentially improve efficiency within quality control.
2

Use of nanoemulsion liquid chromatography (NELC) for the analysis of inhaled drugs. Investigation into the application of oil-in-water nanoemulsion as mobile phase for determination of inhaled drugs in dosage forms and in clinical samples.

Althanyan, Mohammed S. January 2011 (has links)
There has been very little research into the bioanalytical application of Microemulsion High Performance Liquid Chromatography (MELC), a recently established technique for separating an active pharmaceutical ingredient from its related substances and for determining the quantity of active drug in a dose. Also, the technique is not good at separating hydrophilic drugs of very similar chemical structures. Different phase diagrams of oil (octane or ethyl acetate), co-surfactant (butanol), surfactant (sodium dodecyl sulphate (SDS) or Brij-35) and buffer (Phosphate pH 3) were developed and several nanoemulsion mobile phases identified. Nanoemulsion mobile phase that is, prepared with SDS, octane, butanol and a phosphate buffer, failed to separate hydrophilic compounds with a very close chemical structure, such as terbutaline and salbutamol. A nanoemulsion mobile phase containing a non-ionic surfactant (Brij-35) with ethyl acetate, butanol and a phosphate buffer, was, however, successful in achieving a base line separation, and the method was validated for simultaneous determination of terbutaline and salbutamol in aqueous and urine samples. An oil-in-water (O/W) NELC method was developed and validated for the determination of formoterol in an Oxis® Turbuhaler® using pre-column fluorescence derivatisation. Although the same mobile phase was extended for separation of formoterol in urine, the formoterol peak¿s overlap with endogenous peaks meant that fluorescence detection could not determine formoterol in urine samples. Solid phase extraction, concentrating the final analyte 40 times, enabled determination of a low concentration of formoterol in urine samples by UV detection. The method was validated and an acceptable assay precision %CV <4.89 inter-day and %CV <2.33 intra-day was achieved. Then after the application of O/W nanoemulsion mobile phase for HPLC was extended for the separation of lipophilic drugs. The nanoemulsion liquid chromatography (NELC) method was optimised for the determination of salmeterol and fluticasone propionate in good validation data was achieved. This thesis shows that, in general, the performance of O/W NELC is superior to that of conventional High Performance Liquid Chromatography (HPLC) for the analysis of both hydrophilic and lipophilic drugs in inhaled dosage formulations and urine samples. It has been shown that NELC uses cheaper solvents and that analysis time is faster for aqueous and urine samples. This considerable saving in both cost and time will potentially improve efficiency within quality control.

Page generated in 0.1505 seconds