• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 792
  • 404
  • 212
  • 156
  • 98
  • 68
  • 26
  • 18
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 2114
  • 834
  • 716
  • 635
  • 407
  • 383
  • 370
  • 296
  • 276
  • 273
  • 218
  • 191
  • 186
  • 164
  • 161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Synthesis and characterization of copper chalcogenide nanoparticles and their use in solution processed photovoltaics

Kalenga, Pierre Mubiayi January 2015 (has links)
A Thesis submitted to the Faculty of Science, School of Chemistry at University of the Witwatersrand, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015. / Photovoltaic cells offer a good alternative to the fossil fuels. Several approaches are being analysed in order to have solar cells that are capable to conquer the energy market all around the world. Quantum dots (QDs) have already proven features that can be taken into account to improve the properties of solar cells. Metal selenide nanoparticles (NPs) possess semiconducting behaviours that can vary with their structural and optical properties evolving from their synthesis. The reaction parameters such as the method, time, solvent and precursors can affect the growth and nucleation of particles and thus impose on the properties of the synthesized materials. The performance of solar cells made of the synthesized metal selenides will then be dependent upon the properties of the NPs used as active layer. Furthermore, the electrical current generation also depends on the structure of the deposited active layer and its interface with other films to be assembled for the device. The binary copper selenide, ternary copper indium selenide (CISe), quaternary copper indium gallium selenide (CIGSe) and quinary copper zinc tin sulphur selenide (CZTSSe) NPs were synthesized via conventional colloidal method (CCM) and microwave assisted method (MAM). The MAM has a particular interest as it is less time consuming and can easily be a large scale synthesis. Photovoltaic devices were fabricated from the synthesized materials as proof of concept for photovoltaic activities. The CCM was used to optimize various parameters for the synthesis of each type of the chalcogenide materials as this is easily controllable than the ones from the sealed vessel from MAM. The dependency of properties of all copper chalcogenide NPs on the time, precursor concentration, temperature and solvent of synthesis have been demonstrated via various characterization techniques including ultraviolet-visible-near infrared spectroscopy, photoluminescence spectroscopy, X-ray diffractometry and transmission electron microscopy. The binary copper selenide was first synthesized and considered as a template for evaluation of the use of copper chalcogenide materials in solar cells. Relatively smaller copper selenide NPs with average sizes of 4.5 and 6.0 nm were obtained from conventional colloidal and microwave assisted methods respectively. The sample yielded from the microwave assisted method possessed less polydispersed NPs. The later had better crystallinity in which prevailed a single cubic Cu2Se phase. To the best of our knowledge this is the first evidence of defined shapes and nearly single phase of small sized copper selenide NPs synthesized by mean of the MAM. The copper selenide particles synthesized via this method were used to fabricate a Schottky device. The conditions of copper selenide synthesis were optimized to 250 oC, 30 min of CCM synthesis using oleylamine (OLA) and a Cu/Se ratio of 1:1. Nearly hexagonal facets with blue-shifted absorption band edge of monodispersed NPs sizing 4-8 nm in diameter were obtained. The synthesized copper selenide showed better crystallinity with a single cubic Cu2Se phase. A Schottky device using MAM synthesized copper selenide NPs as the semiconducting layer was fabricated at room temperature. The diode effect was demonstrated with the electrical parameters such as the ideality factor, barrier height and the series resistances extracted from the experimental current-voltage data using the thermionic theory and Cheung’s modification. The thermionic theory resulted in the ideality factor of 4.35 and the barrier height of 0.895 eV whilst the Cheung’s method resulted in the ideality factor, barrier height and series resistance of 1.04, 2.59 10-3 eV and 0.870 Ω respectively. The ternary copper indium selenide NPs showed that the MAM allowed the formation of copper rich NPs alongside secondary products. The synthesis of the ternary sample via CCM was optimized using uncapped precursors (no TOP was added) in OLA at 220 oC for 30 min. The synthesized CuInSe2 NPs possessed a large blue-shift in their absorption band edges and emission peaks. The nearly stoichiometric CuInSe2 particles with diameter sizes of 5-9 nm were found in tetragonal crystalline orientation. The cyclic voltametry (CV) and the absorption spectra showed a large blue-shifted energy gap, about 0.95 eV, an increase from the bulk, proving the quantum confinement effects of synthesized copper indium selenide quantum dots. The CuInSe2 NPs were thus used as absorbing materials in the quantum dot sensitized solar cell devices (QDSSCs). The QDSSC devices were assembled via treatment of the titanium oxide, quantum dot layers and their interface. This was done by the treatment of copper indium selenide surface with mercapto-propionic acid (MPA) and ethanedithiol (EDT) during the deposition of the quantum dots onto TiO2 films. The MPA treatment did not reveal positive effects on copper indium selenide thin film and the assembled device under our optimized working conditions. However the use of EDT allowed the improvement of electron transport. The short circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) obtained from the current-voltage (J-V) curves reached the values of 324 μA cm-2, 487 mV and 43% respectively, indicating that the investigated quantum dots possess electrical properties. For the quaternary copper indium gallium selenide, relatively small sized NPs were synthesized via CCM and MAM. The CCM synthesized CIGSe NPs were less agglomerated with a shorter tailing in absorption than those from MAM. The stoichiometric CuIn0.75Ga0.25Se2 showed less agglomerated and highly crystalline particles with a large blueshifted absorption band edge and a smaller full width at halth maximum (FWHM) of the emission peak compared to CuIn0.5Ga0.5Se2 and CuIn0.25Ga0.75Se2. The use of OLA as solvent of synthesis improved the growth and dispersivity of copper indium gallium selenide NPs. The particles with a large blue-shifted absorption band edge, a lattice of tetragonal phase, more monodispersed CIGSe and possessing an average size of 6.5 nm were obtained from CCM synthesis using OLA. The OLA as-synthesized CIGSe NPs were used in thin film for the assembly of QDSSC. The device exhibited electrical properties with the Jsc, Voc and FF of 168 μA cm-2, 162 mV and 33% respectively. The overall device performance was poor but may further be improved for further photovoltaic application. The quinary CZTSSe NPs possessed large blue-shifted absorption band edges of 450-460 nm than the bulk material (827 nm). The emission peak at 532 nm and similar FWHM of less than 50 nm were observed in samples from both CCM and MAM. More monodispersed crystals were obtained with both methods whilst the average particle sizes of 10 and 9 nm were yielded from MAM and CCM respectively. The nanoparticles crystallized in tetragonal lattices between copper zinc tin sulphide and copper zinc tin selenide crystals. However, the MAM gave more crystalline phases. The CV and the absorption spectra showed a blue shifted energy gap, about 0.21 eV increase from the buk which is located at 1.51 eV. This is indicative of the quantum confinement effects of synthesized NPs. The evidence of electrical properties was also shown in the QDSSCs fabricated using the MAM synthesized quinary QDs. This was done following the same treatments as for copper indium selenide devices. The Jsc, Voc and FF were found at the maxima of 258 μA cm-2, 395 mV and 38% respectively. The MPA and EDT treatments did not improve the device performance under our working conditions. Nevertheless, the electrical properties observed in the assembled device were indicative of promising efficient solar cells from synthesized CZTSSe NPs.
332

Enhancement of photo-conversion efficiency of organic solar cells by plasmon resonance effect

Otieno, Francis Otieno January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2015. / Organic Photovoltaic (OPVs) is a promising alternative technology to provide clean and inexhaustible energy due to their excellent optoelectronic properties of the active polymer blends. The organic polymers have low weight, tunable electrical and optical properties besides being relatively insensitive to film imperfections which in the long run enable low-cost high-throughput roll-to-roll processing. However, their photo-conversion efficiency (PCE) and instability to air remains their greatest drawback as these preclude their commercialization. Indeed the highest power-conversion efficiency reported in literature is between 10-12 % compared to their inorganic counterparts (40 %). Therefore there is great need for improvement to make them competitive with grid parity. In this thesis, the major factors limiting the efficiency of organic solar cells such as light absorption, exciton diffusion and dissociation as well as charge collection are investigated and discussed. Despite the high thickness dependent absorption coefficients (>105 cm-1) within the visible spectrum the materials exhibit short exciton diffusion lengths (10-20 nm) which limit the optimal active layer thickness to a few nanometers. Improving optical absorption within this thickness forms the basis of this project. We report the use of surface Plasmons synthesized by both thermal evaporation and Radio Frequency (RF) magnetron sputtering system to tune and enhance optical absorption and scattering using the surface Plasmon resonance effect. The NPs were annealed at various temperatures and for different times to reconstruct and modify their shapes, sizes as well as the inter-particle distance (coverage). Stability is of paramount importance in organic semiconductor devices. Serious degradation in air constrains their applications potential. The study further investigates the mechanisms that determine the stability of organic photovoltaic devices. Our results depict the degradation mechanisms and their circumvention through the use of high mobility pentacene to improve stability.
333

Étude théorique de matériaux pérovskites halogénées / Theoretical study of halide perovskite materials

Che, Xiaoyang 20 September 2018 (has links)
Cette thèse est entièrement consacrée à l'étude par la théorie de la fonctionnelle de la densité des composés pérovskites halogénés, matériaux prometteurs pour de nombreux domaines applicatifs. Le caractère « hybride » de ce type de matériau est illustré par différentes études de leurs propriétés structurales et électroniques. Le composé tridimensionnel MAPbBr₃ est tout d'abord présenté. Les propriétés électroniques fondamentales telles que les structures de bandes, les états de densité projetée ou les fonctions d'ondes sont discutées. De plus, l'importance du couplage spin-orbite est mise en évidence. L'analyse des symétries est appliquée pour comprendre la symétrie des états électroniques et pour interpréter les propriétés optiques des différents matériaux. Les reconstructions structurales à la surface des cristaux entraînent l'apparition d'effets Rashba-Dresselhaus. Par ailleurs les défauts de surface et leurs passivations sont également étudiés. Des travaux sur les matériaux sans plomb potentiellement moins toxiques sont proposés dans un second temps. Ces études ont pour but d'analyser leurs potentiels pour le photovoltaïque du point de vue des structures électroniques. Différentes stratégies de substitution sont envisagées allant du simple remplacement du plomb à d'autres alternatives plus élaborées comme les pérovskites doubles ou les pérovskites de basse dimensionnalité. / This actual work is entirely devoted to the study of halide perovskite materials, promising materials in many fields of application, by means of the Density Functional Theory. The "hybrid" feature of this type of material is illustrated through various studies of their structural and electronic properties. The three-dimensional compound CH₃NH₃PbBr₃ is firstly presented. Basic electronic properties such as band structures, projected density of states or wave functions are discussed. In addition, the importance of spin-orbit coupling is highlighted. Symmetry analysis is applied to understand and interpret the optical properties of different materials. Structural reconstructions on the surface of the crystals lead the Rashba-Dresselhaus effects. In addition, surface defects and their passivations are also studied. Studies on lead-free materials that are potentially less toxic are proposed in a second step. These studies aim to analyze their potentials for photovoltaic devices from the point of view of electronic structures. Different substitution strategies, ranging from the simple replacement of lead to other more elaborate alternatives such as double perovskites or low-dimensional perovskites are investigated as well.
334

Qualificação e etiquetagem de inversores para sistemas fotovoltaicos conectados à rede / Qualifying and Labeling of Inverters for Grid-Connected Photovoltaic Systems

Pinto Neto, Aime Fleury de Carvalho 30 May 2012 (has links)
Este trabalho apresenta o desenvolvimento de uma metodologia para a etiquetagem e qualificação de inversores para Sistemas Fotovoltaicos Conectados à Rede, com finalidade de servir de proposta de procedimento para inclusão no Regulamento de Avaliação de Conformidade de Equipamentos e Sistemas Fotovoltaicos do Programa Brasileiro de Etiquetagem. O procedimento desenvolvido avalia os inversores quanto à eficiência, qualidade de energia, proteções e informações operacionais e de instalação. / This work presents the development of a methodology for qualification and labeling of inverters for grid-connected photovoltaic systems, aiming serving as procedural proposal for inclusion in the Conformity Assessment Rules of Equipments and Photovoltaic Systems of the Brazilian Labeling Program. The developed procedure evaluates the inverters efficiency, power quality, protections and operational and installation information.
335

Nano-optics of Perforated Metallic Films

Sun, Tianyi January 2014 (has links)
Thesis advisor: Krzysztof Kempa / Thesis advisor: Zhifeng Ren / In the past few decades, accompanied by the fascinating development of micro- and nano-fabrication techniques, the successful integration of subwavelength optics and multilayer structures has led to a number of remarkable discoveries. In this work, I present both experimental and theoretical investigations of the optics of thin metallic films with micro-/nano-scale perforations in the UV-VIS-IR ranges. Different fabrication techniques are employed, including nanosphere lithography, grain boundary lithography, crack templates, and sintered nanoparticles. The optical properties these films are studied, revealing important relation between optical response and the film geometry. This includes the evolution of plasmonic resonances in a series of periodic arrays of holes in a metallic film, with hole sizes increasing gradually until an array of islands is achieved. This evolution is an analog of the percolation problem, and critical phenomena are observed at the percolation threshold. Multilayer broad-band electromagnetic absorbers are also designed and fabricated based on the study of these perforated films. Parallel with these observations, an analytical coherence model is proposed to bridge the subwavelength and superwavelength limits. Such a model also provides an alternative way to handle thin random structures, avoiding large quantity of numerical computation. These studies can find applications in the design of sensors, ultrathin solar cells and transparent electrodes, as well as in applications where random structures are widely used. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
336

Unconventional semiconductors for applications to functionalized interfaces in photovoltaics and biosensors / CUHK electronic theses & dissertations collection

January 2014 (has links)
As the rapid development of the applications of unconventional semiconductors in the 21th century, the new electronic and bioengineering revolutions based on solid state devices have become possible, that is facilitated through the understanding of electron or energy transfer process at the functionalized interfaces of organic semiconductors and two-dimensional (2D) materials. Especially in applications of photovoltaics and biosensors, the attributes of the interfaces play an important role in performance advancement. In this thesis, I have focused on the utilization of organic small molecule semiconductors as energy cascade materials to modify the interfaces between donor and acceptor of P3HT/PC₆₁BM binary organic solar cell, so as to improve the device performance. The charge transfer process at the interface of P3HT and functionalized graphene has also been investigated through P3HT/functionalized graphene blending photovoltaic devices. Moreover, I have concentrated on the interface of single layer MoS₂ and fluorescently-labeled DNA, where the electrons were transferred from fluorescent groups of DNA to MoS₂, resulting in fluorescence quenching. This quenching characteristic can be useful in other related biosensors. / In Chapter 1, an introduction to organic semiconductors and two-dimensional materials for applications in photovoltaics and biosensors has been presented. In Chapter 2, the experimental details used in this thesis have been discussed. / In Chapter 3, a novel small organic semiconductor molecule (CPA) with ambipolar attribute as an energy cascade material has been employed, to fabricate bulk heterojucntion solar cells. The organic photovoltaic devices with ternary structures, demonstrates a step of energy cascade to assist charge transfer between the electron-donating P3HT and electron-accepting PC₆₁BM. The ternary structure offers a distinct platform and an easily applicable approach to overcome shortcomings in P3HT-PC₆₁BM system by increasing the attainable product of short circuit current (JSC) and open circuit voltage (VOC). This ternary structure also retains the simplicity of a single processing step for photoactive layer. / In Chapter 4, to explore the potential of the p-type small organic semiconductor DTDCTB as energy cascade material in ternary blend bulk heterojunction (BHJ) solar cells, I have studied a BHJ system based on poly (3-hexylthiophene) (P3HT), [6,6]-phenyl C₆₁ butyric acid methyl ester (PC₆₁BM) and DTDCTB. This ternary structure demonstrates the improvement of power conversion efficiency (PCE) as compared to that of the binary devices composed of P3HT/PC₆₁BM alone. A systematic spectroscopic study was carried out to elucidate the underlying mechanism. Wavelength-dependent external quantum efficiency measurement confirmed the DTDCTB contribution to the increased photocurrent. Photoinduced spectroscopy and transient photovoltage measurements unambiguously revealed that the charges generated in DTDCTB were efficiently transferred to and transported in P3HT and PC₆₁BM. The results also suggested that despite the realization of cascade charge transfer, the bimolecular charge recombination process in the ternary system is still dominated by the P3HT/PC₆₁BM interface. / In Chapter 5, a simple method by using aryl diazonium salt reaction has been devised to achieve covalent bond formation by altering the hybridization of carbon atom in configuration of sp² to sp³. Afterwards the group of benzoic acid has been grafted onto pristine graphene, to open a band gap of this two-dimensional material. It was well functionalized, dissolved in organic solvents to provide the various of fabrication processes for electron devices. The LUMO of functionalized graphene below the LUMO of P3HT and close to that of PC₆₁BM indicates its suitability as an electron-acceptor for OPV applications. Then the bulk heterojunction solar cells composed of P3HT/functionalized graphene composite as active layer have been further prepared, achieving a PCE efficiency of 1.1%. / In Chapter 6, a novel MoS₂-based fluorescent biosensor for DNA detections via hybridization chain reactions (HCRs) has been demonstrated. MoS₂, as an emerging nanomaterial, has excellent fluorescence quenching ability and distinct adsorption properties for single- and double-stranded DNA. In the sensing method, MoS₂ nanosheets were used to suppress the background signal and control the “on” and “off” states of fluorescence emission of the detection system with and without the presence of the target DNA. In addition, the signal generation was amplified through the target-triggered HCRs between two hairpin probes. The utilization of MoS₂ and HCRs guaranteed the high sensitivity of the detection strategy with the detection limit of 15pM. The biosensor also exhibited very good selectivity over mismatched DNA sequences. The detection took place in solutions and requires only one “mix-and-detect” step. The high sensitivity, selectivity, and operational simplicity demonstrate that MoS₂ can be a promising nanomaterial for versatile biosensing. / In Chapter 7, I provide the conclusions and a brief prospect of the further development in ternary system of perovskite solar cells and in based-two dimensional materials micro-fluidic biological monitoring FET. / 對於二十一世紀,隨著人們對非传统半导体材料应用的發展有著迫切的需求,新的基於固態器件的電子工程和生物工程的革命正在悄然進行,這是基於對有機半導體材料和二維層狀材料的功能化的界面上發生的電子或者能量轉移的理解,特別是在太陽能電池器件和生物傳感器方面上的應用。本論文主要是關注與利用有機半導體小分子作為能級梯級材料去调节P3HT/PC₆₁BM二元有機光伏器件中給體與受體見的界面,從而得到更好性能的器件。同時也關注了P3HT和功能化的石墨烯界面上的電荷轉移,并通過P3HT/功能化石墨烯混合有機光伏器件來研究界面上的電荷轉移。另外,還關注了單層硫化鉬和螢光標記的DNA間的界面,在這個界面上DNA螢光基團的能量會轉移到二硫化鉬上從而導致螢光淬滅,並且應用這一淬滅特性在生物傳感上。 / 在第一章中,本論文對有機半導體和二維材料在光伏器件和生物傳感器件中的應用給出了一個簡單的介紹。第二章展示了論文涉及到的檢測方法。 / 在第三章中,本論文利用一種新型的具有雙極性的有機半導體小分子(CPA)作為能級梯級材料去製作異質結太陽能器件。這些具有三元體系結構的太陽能器件展示了能級梯級變化的過程,這個過程是為了改善電子給體P3HT和電子受體PC₆₁BM間的電荷轉移。這種三元體系結構提供了一種顯著而且簡單的方法來克服P3HT-PC₆₁BM二元體系的不足,并通過提高其短路電流和開路電壓的乘積來實現,同時保持簡單的一步光敏層的製作方式。 / 在第四章中,為了探索P型有機半導體小分子DTDCTB能否作為級聯材料在有機異質結太陽能器件中使用,本論文研究了三元體系包含P3HT,PC₆₁BM和DTDCTB的有機異質結太陽能器件。這種三元結構器件展現出更佳的性能對比與P3HT/PC₆₁BM二元體系器件。另外,三元體系中電荷轉移的內在機制通過一系列系統的光譜來闡明。光誘導光譜和瞬態光電壓測試明確的揭示了DTDCTB中產生的電荷會被有效的通過P3HT和PC₆₁BM傳輸走。這些結果還表明,儘管存在級聯電荷傳輸,但是雙分子間的電荷複合過程主要發生在P3HT/PC₆₁BM界面。 / 第五章提出一個簡單的通過使用芳香基重氮鹽反應的方法,實現了碳碳共價鍵合成的反應,這種反應是通過改變碳原子sp²雜化成sp³雜化的方式進行的,而且可以移植苯甲酸官能團到原味的石墨烯上來打開石墨烯的帶隙。石墨烯這種二維層狀材料通過明確的的功能化后,可以溶在有機溶劑中從而提供了其作為電子器件的製作工藝的多元化。功能化后的石墨烯的LUMO能級比P3HT的LUMO能級要低,並且接近于PC₆₁BM的LUMO能級,這一特性意味著功能化后的石墨烯作為電子受體在有機光伏器件中的應用是可行的。因此,本論文進一步展示了以P3HT和功能化后的石墨烯複合材料作為光敏層的異質結太陽能器件,並且其具有1.1%的光電轉化效率。 / 在第六章中,本論文提出了一種新型基於二硫化鉬的螢光生物傳感器,這一傳感器通過雜交連鎖反應(HCRs)應用於DNA檢測。二硫化鉬作為新興的納米材料,有著對單鏈或者雙鏈DNA的良好螢光淬滅和顯著的吸附特性。在此檢測方法中,二硫化鉬納米片被用來抑制背景信號,並且通過存在或者不存在目標DNA來控制檢測體系中螢光發射的開啟和閉合。另外,檢測信號通過兩個髮夾型DNA探針間的目標觸發的HCR方法放大。通過使用二硫化鉬和HCR實現了高靈敏度的檢測,其檢測極限是15pM。這個傳感器對於DNA的錯配具有良好的選擇性。這個檢測在溶解中進行,並且僅僅需要簡單的一步混合來實現。高的靈敏度、選著性和工藝簡單等特性表明了二硫化鉬這種納米材料可以在多種生物檢測中使用。 / 第七章三元體系鈣鈦礦結構光伏器件和基於二維材料微流生物檢測器件的應用。 / Ye, Lei. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014. / Includes bibliographical references. / Abstracts also in Chinese. / Title from PDF title page (viewed on 04, October, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
337

Growing Cu(In,Ga)Se₂ thin film solar cells with high efficiency and low production costs. / Growing copper(indium,gallium)selenium2 thin film solar cells with high efficiency and low production costs / 高效率、低成本銅銦鎵硒薄膜太陽能電池的製造 / Growing Cu(In,Ga)Se₂ thin film solar cells with high efficiency and low production costs. / Gao xiao lu, di cheng ben tong yin jia xi bo mo tai yang neng dian chi de zhi zao

January 2012 (has links)
銅銦鎵硒薄膜太陽能電池因為其高效率及相對低廉的成本,商業應用已經開始陸續出現。我們自主研發的集成式銅銦鎵硒薄膜電池生產系統可以全程製作襯底大小為10cm x 10cm 的電池及剃型組件。本研究工作主要分為兩個方向:第一個方向是研究及測試生長高效率太陽能電池及組件的具體條件。通過儀器改進及電池每層鍍膜的條件優化,能夠重複的生長高效率電池及組件; 第二個方向是通過減少銅銦鎵硒吸光習的厚度從而達到降低電池生產成本的目的。 / 銅銦鎵硒採用三步共蒸法製備吸收層。第一步先蒸發銦、鎵、硒三種元素形成n型硒化銦(鎵)薄膜;第二步蒸發銅、硒形成銦鎵硒半導體薄膜; 第三步蒸發一層額外的型硒化銦(鎵)薄膜保證整體電池是p型半導體。三步期間的襯底溫度經過小心調試,以使得合適的鎵梯度能夠在吸收層裹形成。通過每一層的條件優化我們能夠生長出高光電轉換效率的太陽能電池(17%)及組件(12%)。 / 太陽能電池的變溫測試及弱光測試對瞭解其應用潛能存在非常重要的作用。通過多組對比實驗發現銅銦鎵硒電池的溫度係數可以通過增加鎵在吸收層的組分而得到改善。同時,電池的弱光表現可以通過減少銅的量得到很大的提高。STM 的研究發現弱光表現得到改善是因為吸收層顆粒介面電阻的增加而導致的。 / 減少吸收層的厚度有利於進一步減少太陽能電池的材料成本。當電池的吸收層厚度小於一微米時,開路電壓跟短路電流都明顯有所減少,從而導致太陽能電池效率降低。更薄電池效率的提高可以從兩個方面來實現:氧化鋅表面的陷光結構及更加合適的鎵含量的使用。通過這兩艇改進方法,電池效率被提高到14%以上,使得超薄電池有更好的應用前景。 / Cu(In,Ga)Se₂ (CIGS)-based thin film solar cell has been commercialized recently due to its high energy conversion efficiency. We have designed an integrated satellite deposition system for producing CIGS solar cell with substrate size of 10cm x 10cm. This work mainly contains two parts with first part focusing on growing and characterizing high quality baseline solar cells and solar modules and second part concentrating on further reducing the material costs by growing thinner absorber layer with high efficiency. / The most difficult part in growing high quality CIGS solar cells originate from the absorber layers which contain p-type chalcopyrite structures with four different elements: Cu, In, Ga and Se. The widely used three-stage process is employed to co-evaporate In, Ga and Se first, then Cu and Se are evaporated to form the chalcopyrite CIGS structure and additional In, Ga and Se are deposited in the end to ensure an overall Cu deficiency, which is important for getting p-type semiconductors. The substrate temperatures during these three stages are carefully adjusted to introduce proper gallium gradients which is important for collecting electrons efficiently. Together with optimizing other layers we are able to get cell efficiency (area around 0.5 cm²) over 17%. To produce CIGS mini-modules, laser scribing as well as mechanical scribing are employed for series interconnection of individual cells using monolithic integration. The power and speed of laser together with the condition of mechanical scriber are carefully adjusted to ensure a minimum dead area in the module. Module (area around 80 cm²) with efficiency over 12% is produced. / Solar cells were fabricated and tested under varied temperature and weak light conditions. Temperature coefficient is compared between CIGS solar cells and other types of solar cells. Temperature coefficient is improved a lot with higher gallium content in the absorber layer. Weak light performance is shown to be increased a lot when copper percentage is lowered down. In order to examine the origin of beneficial effects from Cu-poor absorber, solar cells are grown with comparable grain sizes using our technique and I-V performances are examined under STM in grain/atomic scale. Leakage current is found to be mainly originates from boundary area. CIGS solar cells with Cu-poor absorber benefit from the reduced leakage from boundary area. / CIGS solar cells with thinner absorber thickness are studied and compared with conventional CIGS solar cells. We have found that high conversion efficiency solar cells can be grown for absorber thickness as thin as 1.5μm. Further reduction in absorber thickness deteriorates solar cell performances in both V∝ and Jsc resulting in conversion efficiency as low as 11%. / Two major approaches are performed to improve solar cell performances. Light trapping by etching AZO top contact for creating pyramid-structures to enhance light scattering. Efficiency is increased by more than 1.5% for solar cells with etched AZO surfaces. Solar cells with efficiency larger than 13% can be grown by using AZO etching. Another approach is by using suitable Ga content in absorber layer. Solar cells with efficiency as high as 14.17% are grown which makes thinner CIGS solar cells very competitive. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Yang, Shihang = 高效率、低成本銅銦鎵硒薄膜太陽能電池的製造 / 楊世航. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 101-109). / Abstract also in Chinese. / Yang, Shihang = Gao xiao lu, di cheng ben tong yin jia xi bo mo tai yang neng dian chi de zhi zao / Yang Shihang. / Chapter 1 --- Introduction to Photovoltaics --- p.1 / Chapter 1.1 --- Energy crisis --- p.1 / Chapter 1.2 --- Physics of solar cells --- p.4 / Chapter 1.2.1 --- Light Absorption --- p.4 / Chapter 1.2.2 --- Charge Carrier Separation --- p.8 / Chapter 1.2.3 --- Solar Cell I-V Characteristics --- p.9 / Chapter 1.3 --- Classifications of Solar Cells --- p.11 / Chapter 1.3.1 --- Crystalline silicon solar cell --- p.11 / Chapter 1.3.2 --- Thin film solar cells --- p.12 / Chapter 1.3.3 --- Organic and polymer solar cells --- p.13 / Chapter 1.4 --- Cu(In,Ga)Se₂ (CIGS) based Solar Cells --- p.13 / Chapter 1.4.1 --- State of the art --- p.13 / Chapter 1.4.2 --- Material properties and structures --- p.14 / Chapter 1.4.3 --- CIGS advantages --- p.17 / Chapter 2 --- Integrated CIGS deposition system and fabrication process optimization --- p.21 / Chapter 2.1 --- Introduction to vacuum deposition system --- p.21 / Chapter 2.1.1 --- Integrated CIGS solar cell deposition system --- p.21 / Chapter 2.1.2 --- Ni-Al top grid evaporation system --- p.23 / Chapter 2.2 --- Fabrication processes --- p.23 / Chapter 2.2.1 --- Substrate treatment --- p.23 / Chapter 2.2.2 --- Molybdenum back contact deposition --- p.24 / Chapter 2.2.3 --- CIGS absorber layer formation --- p.26 / Chapter 2.2.4 --- Hetero-junction formation --- p.31 / Chapter 2.2.5 --- Window layer optimization --- p.32 / Chapter 2.2.6 --- Laser and mechanical scribing for mini-modules fabrication --- p.37 / Chapter 2.3 --- Equipment improvements --- p.42 / Chapter 2.3.1 --- Heating uniformity of substrate --- p.42 / Chapter 2.3.2 --- Use of pyrometer for improved control of absorber thickness/composition --- p.43 / Chapter 2.3.3 --- Se cracking unit --- p.45 / Chapter 2.4 --- Characterization of CIGS solar cells --- p.47 / Chapter 2.4.1 --- Morphology, composition and crystallinity --- p.47 / Chapter 2.4.2 --- Depth profile of CIGS --- p.49 / Chapter 2.4.3 --- Electrical property measurements --- p.51 / Chapter 2.5 --- Conclusion --- p.54 / Chapter 3 --- Performance of CIGS solar cells under non-standard test conditions --- p.56 / Chapter 3.1 --- Temperature coefficient measurement of CIGS --- p.57 / Chapter 3.1.1 --- Equipment set-up --- p.57 / Chapter 3.1.2 --- Temperature coefficients for different types of solar cells . --- p.60 / Chapter 3.1.3 --- CIGS solar cells with varied Ga/III composition --- p.65 / Chapter 3.2 --- Weak Light Performance of CIGS --- p.69 / Chapter 3.2.1 --- Introduction --- p.69 / Chapter 3.2.2 --- Experiment --- p.72 / Chapter 3.2.3 --- Results and discussion --- p.73 / Chapter 3.3 --- Conclusion --- p.81 / Chapter 4 --- CIGS solar cells with lower fabrication cost --- p.83 / Chapter 4.1 --- Fabrication cost analysis for commercial CIGS solar cells --- p.83 / Chapter 4.2 --- Thinner CIGS absorber layer --- p.84 / Chapter 4.2.1 --- Solar cell performances with different absorber thicknesses --- p.84 / Chapter 4.2.2 --- Performance improvement for thinner solar cell --- p.87 / Chapter 4.3 --- Conclusion --- p.96 / Chapter 5 --- Conclusion --- p.98 / Chapter 5.1 --- Summary of previous researches --- p.98 / Chapter 5.2 --- Future work --- p.99 / Bibliography --- p.101
338

Pseudo-one-dimensional nanostructures for photovoltaic, photocatalytic and plasmonic applications. / 準一維納米結構在光伏、光催化及等離子體激元方面的應用 / CUHK electronic theses & dissertations collection / Pseudo-one-dimensional nanostructures for photovoltaic, photocatalytic and plasmonic applications. / Zhun yi wei na mi jie gou zai guang fu, guang cui hua ji deng li zi ti ji yuan fang mian de ying yong

January 2012 (has links)
在本篇論文中,我們成功地在透明導電襯底上製備了一系列準一維納米材料陣列。我們首先製備了氧化鋅納米線陣列,然後把它們用作氧化鋅/硒化鎘核殼納米線纜陣列中的核以及合成硒化鎘和碲化鎘納米管陣列所需的犧牲模板。最後,金納米管陣列則是利用之前製備的硒化鎘納米管陣列為模板合成的。氧化鋅納米線陣列是通過高溫的熱蒸法和低溫的水熱法製備的。水熱法製備的氧化鋅納米線陣列的電導高於熱蒸法製備的氧化鋅納米線陣列,這使得水熱法製備的氧化鋅納米線更適合採用與電相關的後續處理方法。當氧化鋅納米線陣列被用作犧牲模板來製備納米管時,水熱法製備的氧化鋅納米線能被輕易地完全去除。基於這些認識,我們主要採用電化學沉積法在水熱法製備的氧化鋅納米線陣列表面沉積硒化鎘,得到了氧化鋅/硒化鎘核殼納米線纜陣列。接下來,我們將納米線纜陣列光電極和沉積了鉑催化劑的對電極組裝成三文治結構的太陽能電池。研究發現,採用多硫電解液的電池性能比碘基電解液的電池好,其中成分為1摩爾每升硫化鈉,1摩爾每升硫和1摩爾每升氫氧化鈉的多硫電解液的電池效率最高。當去除電化學沉積法生長的氧化鋅/硒化鎘和氧化鋅/碲化鎘核殼納米線纜陣列中的氧化鋅核以後,便在導電襯底上得到了硒化鎘和碲化鎘的納米管陣列。儘管兩種納米管陣列都對可見光有很強的吸收,但是,硒化鎘納米管陣列相比碲化鎘納米管陣列,表現出較高的光響應和較好的光催化降解亞甲基藍的活性。這是因為該樣品中的光生載流子能有效分離,同時能參與化學反應的表面積也較大。最後,我們選用硒化鎘納米管陣列作為模板,利用化學方法製備了金納米管陣列。金納米管的尺寸可以通過控制硒化鎘納米管模板來加以調節。當我們將具有拉曼活性的4-巰基苯甲酸分子吸附到金納米管的表面時,其拉曼散射相比未吸附時,顯著地增強了約四個數量級,如此大的提高來源於金納米管表面附近的局域電場增強效應。 / In this thesis, we demonstrated the synthesis of a series of pseudo-one-dimensional nanostructure arrays on transparent conducting substrates. We started with ZnO nanowire arrays, which were then served as the core for the ZnO/CdSe core/shell nanocable arrays formation. Further taking the ZnO as sacrificial templates led to the formation of CdSe (and CdTe) nanotube arrays. Finally, Au nanotube arrays were fabricated using the CdSe nanotube arrays as the template. ZnO nanowire arrays were synthesized via high-temperature thermal evaporation method (TE) and low temperature hydrothermal method (HT). The electrical conductivity of HT samples on the substrates was higher than that of the TE counterparts, making it attractive for further electrical-based processing. When serving as the sacrificial templates for nanotube fabrication, HT nanowires can be completely removed with ease. Based on these understanding, ZnO/CdSe core/shell nanocable arrays were obtained mainly via electrochemical deposition of CdSe on HT ZnO nanowire arrays. Nanocable-array-photoelectrode was assembled with a Pt-coated counter electrode into a sandwiched solar cell. Polysulfide electrolytes with various compositions were found to work better than iodine-based ones for such cells, and the cell with the polysulfide electrolyte containing 1 M Na₂S, 1 M S and 1 M NaOH showed highest efficiency. Removal of the ZnO cores in the electrodeposited ZnO/CdSe and ZnO/CdTe nanocable arrays left CdSe and CdTe nanotube arrays on the conducting substrate. Although strong visible-light absorption was observed from both two nanotube arrays, higher photocurrent and better photocatalytic degradation activity of methlyene blue were recorded from CdSe-nanotube-array samples (as compared to the CdTe ones), owing to effective charge separation and large surface area for chemical reactions. Lastly, Au nanotube arrays were synthesized via chemical method using CdSe nanotube arrays as the template. The dimensions of the Au nanotubes, as replicated from CdSe nanotubes, were tunable. When absorbed on the Au nanotube arrays surface, the Raman scattering of 4-mercaptobenzoic acid (a Raman-active molecule) was greatly enhanced for~4 orders of magnitude compared to the signals from the dry powder of the same molecule. Such large increase was due to the strong local electrical field enhancement near the Au nanotubes surface. / Detailed summary in vernacular field only. / Zhu, Haojun = 準一維納米結構在光伏、光催化及等離子體激元方面的應用 / 朱浩君. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 141-168). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstracts in English and Chinese. / Zhu, Haojun = Zhun yi wei na mi jie gou zai guang fu, guang cui hua ji deng li zi ti ji yuan fang mian de ying yong / Zhu Haojun. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.iv / Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xviii / Chapter Chapter 1 --- Introductions --- p.1 / Chapter Chapter 2 --- Background --- p.4 / Chapter 2.1. --- Nanostructured Photovoltaic (PV) Solar Cells --- p.4 / Chapter 2.1.1. --- Fundamental physics of nanostructures for solar cell applications --- p.5 / Chapter 2.1.2. --- Inorganic nano-architectures for PV cells --- p.9 / Chapter 2.2. --- Nanostructures for Photocatalytic Degradation of Organic Pollutants --- p.18 / Chapter 2.2.1 --- Overview of photocatalytic degradation of organic pollutants --- p.19 / Chapter 2.2.2 --- Photocatalysis under visible light illumination --- p.24 / Chapter 2.3. --- Plamonic Noble Metal Nanostructures --- p.29 / Chapter 2.3.1 --- Surface plasmons of noble metal nanostructures --- p.29 / Chapter 2.3.2 --- Applications of plasmonic noble metal nanostructures in solar energy conversion and sensing --- p.35 / Chapter Chapter 3 --- Methodologies and Instrumentations --- p.45 / Chapter 3.1. --- Materials Growth Methodologies --- p.45 / Chapter 3.1.1. --- Thermal evaporation (TE) methods --- p.45 / Chapter 3.1.2. --- Hydrothermal (HT) methods --- p.47 / Chapter 3.1.3. --- Electrodeposition (ED) methods --- p.49 / Chapter 3.1.4. --- Prototype solar cells assemble --- p.52 / Chapter 3.2. --- Characterization Techniques --- p.53 / Chapter 3.2.1. --- Morphological, structural, and compositional analysis using electron microscopy based techniques --- p.53 / Chapter 3.2.2. --- Photoelectrochemical (PEC) performance test --- p.63 / Chapter 3.2.3. --- Photocatalytic degradation of organic pollutants --- p.65 / Chapter 3.2.4. --- Single-particle scattering imaging and spectroscopy --- p.67 / Chapter Chapter 4 --- ZnO Nanowire Arrays on Conducting Substrates -- A Comparison on the Growth Methodology --- p.71 / Chapter 4.1. --- Introduction --- p.71 / Chapter 4.2. --- Experimental --- p.72 / Chapter 4.3. --- Results and Discussions --- p.75 / Chapter 4.3.1 --- Morphologies, crystal structures and chemical compositions --- p.75 / Chapter 4.3.2 --- ZnO nanowire arrays used as electrodes --- p.80 / Chapter 4.3.3 --- ZnO nanowire arrays used as sacrificial templates in electroplating . --- p.85 / Chapter 4.4. --- Conclusions --- p.88 / Chapter Chapter 5 --- ZnO-core/CdSe-shell Nanocable Arrays for Photovoltaic Solar Cells --- p.89 / Chapter 5.1. --- Introduction --- p.89 / Chapter 5.2. --- Experimental --- p.90 / Chapter 5.3. --- Results and Discussions --- p.93 / Chapter 5.3.1 --- Synthesis of the ZnO-core/CdSe-shell nanocable arrays on ITO/glass --- p.93 / Chapter 5.3.2 --- The photovoltaic (PV) performance --- p.100 / Chapter 5.4. --- Conclusions --- p.107 / Chapter Chapter 6 --- CdSe and CdTe Nanotube Arrays as Visible-light-driven Photocatalyst for Organic Pollutant Degradation --- p.108 / Chapter 6.1. --- Introduction --- p.108 / Chapter 6.2. --- Experimental --- p.109 / Chapter 6.3. --- Results and Discussions --- p.112 / Chapter 6.3.1. --- Morphology, crystal structure, and chemical composition of the nanotube arrays --- p.112 / Chapter 6.3.2. --- Optical properties --- p.116 / Chapter 6.3.3. --- Photoelectrochemical (PEC) performance --- p.117 / Chapter 6.3.4. --- Photocatalytic activities --- p.120 / Chapter 6.4. --- Conclusions --- p.123 / Chapter Chapter 7 --- Fabrication of Au Nanotube Arrays and Their Plasmonic Properties --- p.124 / Chapter 7.1. --- Introduction --- p.124 / Chapter 7.2. --- Experimental --- p.125 / Chapter 7.3. --- Results and Discussions --- p.127 / Chapter 7.3.1. --- Morphology, crystalline structure, and chemical composition of Au nanotube arrays --- p.127 / Chapter 7.3.2. --- Au nanotube formation mechanism --- p.129 / Chapter 7.3.3. --- Plasmonic properties of Au nanotube arrays on ITO/glass substrates --- p.131 / Chapter 7.3.4. --- Plasmonic properties of single Au nanotubes --- p.133 / Chapter 7.3.5. --- Au nanotube arrays on ITO/glass as SERS substrates --- p.134 / Chapter 7.4. --- Conclusions --- p.138 / Chapter Chapter 8 --- Conclusions --- p.139 / Bibliography --- p.141
339

Atomistic modelling of perovskite solar cells

Brivio, Federico January 2016 (has links)
This thesis focuses on the study of hybrid perovskites properties for the purposes of photovoltaic applications. During the almost four years PhD project that has lead to this thesis the record photovoltaic efficiency for this technology has in- creased from 10.9% to 22.1%. Such a significant pace of development can be com- pared with few other materials. It is for this reason that hybrid perovsites have at- tracted impressive research efforts. We approached the study of such unique ma- terials using computational ab-initio techniques, and in particular Density Func- tional Theory. We considered different materials, but most of the attention was concentrated on MAPI (CH 3 NH 3 PbI 3 ). The results are divided in three chapters, each exploring a different material prop- erty. The first chapter reports the electronic structure of the material bulk, sur- faces, and other electronic-related properties such as the rotation barrier for the organic component and the Berry phase polarization. The second chapter focuses on the vibrational properties primary employing the harmonic approximation but also extends to the quasi-harmonic approximation. The outcome of these calculations permitted us to calculate theoretical IR and Ra- man spectra which are in good agreement with different experimental measure- ments. The quasi-harmonic approximation was used to calculate temperature dependent properties, such as the Grüneisen parameter, the thermal dependence of heat capacity and the thermal volumetric expansion. The third and last chapter reviews the thermodynamic properties of binary halide compounds. The cobination of ab-initio calculations with the generalised quasi- chemical approximation has allowed to study the stability of mixed composition perovskites. The results certified a set of stable structures that could stand at the base of observed phenomena of photo-degradation of hybrid perovskite based devices. All three chapters have been written to understand the chemical and physical behaviour of hybrid perovskites and to extended and contribute to the under- standing of experimental work.
340

Tellurium attenuation of kesterite band-gap for improved photovoltaic efficiency

Nwambaekwe, Kelechi Chiemezie January 2019 (has links)
>Magister Scientiae - MSc / Tellurium is a member of the chalcogen group in the periodic table and is known to be a better semiconductor material when compared to sulfur and selenium. By introducing tellurium into the kesterite structure there would be an improvement in the semiconducting property of the kesterite material. This research focused on incorporating tellurium into kesterite structure in order to reduce its band-gap thereby improving its light absorption and ultimately lead to a more efficient photovoltaic effect. For a typical synthesis, kesterite nanoparticles were synthesized by anion hot injection process which involved the injection of the anion precursor comprising of sulfur, selenium and tellurium in diethylene glycol into a solution containing the cation precursor which are copper (II) chloride, Zinc chloride and tin (II) chloride which are dissolved in diethylene glycol. The synthesized nanoparticles were copper zinc tin sulfide (CZTS), copper zinc tin sulfide selenide telluride (CZTSSeTe) and copper zinc tin sulfide telluride (CZTSTe). Morphological characterization of the synthesized nanoparticles was carried out by high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM) to obtain the shape of the surface and internal structure of the nanoparticles respectively. The micrograph obtained from HRSEM shows that all synthesized nanoparticles had a flower-like surface appearance which is a common morphology obtained for non-vacuum synthesized kesterite nanoparticles. The micrograph obtained from TEM showed that all nanoparticles were agglomerated and had a black surface covering which attributable to the solvent used during synthesis, washing and centrifugation. The internal structure of the synthesized nanoparticles was obtained through small angle x-ray scattering (SAXS) plot of the shapes. The shape obtained for the nanoparticles were core shell hollow sphere for CZTS, core shell dumb-bell for CZTSSeTe and solid sphere for CZTSTe.

Page generated in 0.0369 seconds