• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude bioinformatique de l’évolution de la régulation transcriptionnelle chez les bactéries/Bioinformatic study of the evolution of the transcriptional regulation in bacteria

Janky, Rekin's 17 December 2007 (has links)
L'objet de cette thèse de bioinformatique est de mieux comprendre l’ensemble des systèmes de régulation génique chez les bactéries. La disponibilité de centaines de génomes complets chez les bactéries ouvre la voie aux approches de génomique comparative et donc à l’étude de l’évolution des réseaux transcriptionnels bactériens. Dans un premier temps, nous avons implémenté et validé plusieurs méthodes de prédiction d’opérons sur base des génomes bactériens séquencés. Suite à cette étude, nous avons décidé d’utiliser un algorithme qui se base simplement sur un seuil sur la distance intergénique, à savoir la distance en paires de bases entre deux gènes adjacents. Notre évaluation sur base d’opérons annotés chez Escherichia coli et Bacillus subtilis nous permet de définir un seuil optimal de 55pb pour lequel nous obtenons respectivement 78 et 79% de précision. Deuxièmement, l’identification des motifs de régulation transcriptionnelle, tels les sites de liaison des facteurs de transcription, donne des indications de l’organisation de la régulation. Nous avons développé une méthode de recherche d’empreintes phylogénétiques qui consiste à découvrir des paires de mots espacés (dyades) statistiquement sur-représentées en amont de gènes orthologues bactériens. Notre méthode est particulièrement adaptée à la recherche de motifs chez les bactéries puisqu’elle profite d’une part des centaines de génomes bactériens séquencés et d’autre part les facteurs de transcription bactériens présentent des domaines Hélice-Tour-Hélice qui reconnaissent spécifiquement des dyades. Une évaluation systématique sur 368 gènes de E.coli a permis d’évaluer les performances de notre méthode et de tester l’influence de plus de 40 combinaisons de paramètres concernant le niveau taxonomique, l’inférence d’opérons, le filtrage des dyades spécifiques de E.coli, le choix des modèles de fond pour le calcul du score de significativité, et enfin un seuil sur ce score. L’analyse détaillée pour un cas d’étude, l’autorégulation du facteur de transcription LexA, a montré que notre approche permet d’étudier l’évolution des sites d’auto-régulation dans plusieurs branches taxonomiques des bactéries. Nous avons ensuite appliqué la détection d’empreintes phylogénétiques à chaque gène de E.coli, et utilisé les motifs détectés comme significatifs afin de prédire les gènes co-régulés. Au centre de cette dernière stratégie, est définie une matrice de scores de significativité pour chaque mot détecté par gène chez l’organisme de référence. Plusieurs métriques ont été définies pour la comparaison de paires de profils de scores de sorte que des paires de gènes ayant des motifs détectés significativement en commun peuvent être regroupées. Ainsi, l’ensemble des nos méthodes nous permet de reconstruire des réseaux de co-régulation uniquement à partir de séquences génomiques, et nous ouvre la voie à l’étude de l’organisation et de l’évolution de la régulation transcriptionnelle pour des génomes dont on ne connaît rien. The purpose of my thesis is to study the evolution of regulation within bacterial genomes by using a cross-genomic comparative approach. Nowadays, numerous genomes have been sequenced facilitating in silico analysis in order to detect groups of functionally related genes and to predict the mechanism of their relative regulation. In this project, we combined prediction of operons and regulons in order to reconstruct the transcriptional regulatory network for a bacterial genome. We have implemented three methods in order to predict operons from a bacterial genome and evaluated them on hundreds of annotated operons of Escherichia coli and Bacillus subtilis. It turns out that a simple distance-based threshold method gives good results with about 80% of accuracy. The principle of this method is to classify pairs of adjacent genes as “within operon” or “transcription unit border”, respectively, by using a threshold on their intergenic distance: two adjacent genes are predicted to be within an operon if their intergenic distance is smaller than 55bp. In the second part of my thesis, I evaluated the performances of a phylogenetic footprinting approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 E.coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference, significance threshold). Motifs are assessed both at the level of correctness and significance. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. Moreover, the predictive power of the strategy, and its capability to track the evolutionary divergence of cis-regulatory motifs was illustrated with the example of LexA auto-regulation, for which our predictions are remarkably consistent with the binding sites characterized in different taxonomical groups. A next challenge was to identify groups of co-regulated genes (regulons), by regrouping genes with similar motifs, in order to address the challenging domain of the evolution of transcriptional regulatory networks. We tested different metrics to detect putative pairs of co-regulated genes. The comparison between predicted and annotated co-regulation networks shows a high positive predictive value, since a good fraction of the predicted associations correspond to annotated co-regulations, and a low sensitivity, which may be due to the consequence of highly connected transcription factors (global regulator). A regulon-per-regulon analysis indeed shows that the sensitivity is very weak for these transcription factors, but can be quite good for specific transcription factors. The originality of this global strategy is to be able to infer a potential network from the sole analysis of genome sequences, and without any prior knowledge about the regulation in the considered organism.
2

Bioinformatic prediction of conserved promoters across multiple whole genomes of Chlamydia

Grech, Brian James January 2007 (has links)
The genome sequencing projects have generated a wealth of genomic data and the analysis of this data has provided many interesting findings. However, genome wide analysis of bacteria for promoters has lagged behind, because it has been difficult to accurately predict the promoters with so much background noise that are found in bacterial genomes. One approach to overcome this problem is to predict phylogenetically conserved promoters across multiple genomes of different bacteria, thus filtering out many of the false positives, which are predicted by the current methods. However, there are no programmes capable of doing this. Therefore, the work presented in this thesis has developed a position weight matrix (PWM) based programme called Multiscan that predicts conserved promoters across multiple bacterial genomes. Since Chlamydia is one of the most sequenced bacterial genera and has a high level of conservation of genes and large-scale conservation of gene order between species, Multiscan was developed and tested on Chlamydia. When Multiscan analysed a genome wide dataset of equivalent non-coding regions (NCRs) upstream of genes, from Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia caviae for σ66 promoters that are phylogenetically conserved, Multiscan predicted 42 promoters. Since only one of the 42 promoters predicted by Multiscan had previously available biological data to confirm its prediction, an additional subset of 10 of the remaining 41 σ66 promoters were analysed in C. trachomatis by mapping the 5' end of the transcripts. The primer extension assay synthesised cDNA products of the correct length for seven of the 10 genes chosen. When the performance of Multiscan was compared to one of the accepted method for genome wide prediction of promoters in bacteria, the &quotstandard PWM method", Multiscan predicted 32 more promoters than the &quotstandard PWM method" in Chlamydia. Furthermore, the promoters predicted by Multiscan were up to three more mismatches from the Escherichia coli σ70 consensus sequence than the promoters predicted by the standard PWM method. Although Multiscan predicted 42 promoters that were well conserved across the three chlamydial species, the analysis was unable to identify the 14 known σ66 promoters in C. trachomatis. These promoters were missed (1) because they were dissimilar to the E. coli σ70 consensus sequence and/or (2) because the promoters were poorly conserved across the three chlamydial species. To address the second possibility, the 14 false negatives were analysed by another phylogenetic footprinting method. Fourteen sets of equivalent NCRs located upstream of the homologous genes from the three chlamydiae were aligned with the computer programme Clustal W and the alignment analysed &quotby eye" for evidence of phylogenetic footprints containing the 14 false negatives. The analysis identified that seven of the 14 false negatives were poorly conserved across the chlamydial species. Analysis of two of the seven promoters that could not be footprinted, the promoters of ltuA and ltuB, by mapping the transcriptional start sites in C. caviae, confirmed their poor conservation across C. trachomatis and C. caviae. This analysis showed that substantial differences exist in chlamydial σ66 promoters from equivalent NCRs upstream of genes. This study has developed a new computer programme for genome wide prediction of promoters that are phylogenetically conserved and has shown the value of this programme by identifying seven new well conserved promoters and seven candidate poorly conserved promoters in Chlamydia.
3

Computational and experimental approaches to regulatory genetic variation

Andersen, Malin January 2007 (has links)
Genetic variation is a strong risk factor for many human diseases, including diabetes, cancer, cardiovascular disease, depression, autoimmunity and asthma. Most of the disease genes identified so far alter the amino acid sequences of encoded proteins. However, a significant number of genetic variants affecting complex diseases may alter the regulation of gene transcription. The map of the regulatory elements in the human genome is still to a large extent unknown, and it remains a challenge to separate the functional regulatory genetic variations from linked neutral variations. The objective of this thesis was to develop methods for the identification of genetic variation with a potential to affect the transcriptional regulation of human genes, and to analyze potential regulatory polymorphisms in the CD36 glycoprotein, a candidate gene for cardiovascular disease. An in silico tool for the prediction of regulatory polymorphisms in human genes was implemented and is available at www.cisreg.ca/RAVEN. The tool was evaluated using experimentally verified regulatory single nucleotide polymorphisms (SNPs) collected from the scientific literature, and tested in combination with experimental detection of allele specific expression of target genes (allelic imbalance). Regulatory SNPs were shown to be located in evolutionary conserved regions more often than background SNPs, but predicted transcription factor binding sites were unable to enrich for regulatory SNPs unless additional information linking transcription factors with the target genes were available. The in silico tool was applied to the CD36 glycoprotein, a candidate gene for cardiovascular disease. Potential regulatory SNPs in the alternative promoters of this gene were identified and evaluated in vitro and in vivo using a clinical study for coronary artery disease. We observed association to the plasma concentrations of inflammation markers (serum amyloid A protein and C-reactive protein) in myocardial infarction patients, which highlights the need for further analyses of potential regulatory polymorphisms in this gene. Taken together, this thesis describes an in silico approach to identify putative regulatory polymorphisms which can be useful for directing limited laboratory resources to the polymorphisms most likely to have a phenotypic effect.
4

Etude bioinformatique de l'évolution de la régulation transcriptionnelle chez les bactéries / Bioinformatic study of the evolution of the transcriptional regulation in bacteria

Janky, Rekin's 17 December 2007 (has links)
L'objet de cette thèse de bioinformatique est de mieux comprendre l’ensemble des systèmes de régulation génique chez les bactéries. La disponibilité de centaines de génomes complets chez les bactéries ouvre la voie aux approches de génomique comparative et donc à l’étude de l’évolution des réseaux transcriptionnels bactériens. Dans un premier temps, nous avons implémenté et validé plusieurs méthodes de prédiction d’opérons sur base des génomes bactériens séquencés. Suite à cette étude, nous avons décidé d’utiliser un algorithme qui se base simplement sur un seuil sur la distance intergénique, à savoir la distance en paires de bases entre deux gènes adjacents. Notre évaluation sur base d’opérons annotés chez Escherichia coli et Bacillus subtilis nous permet de définir un seuil optimal de 55pb pour lequel nous obtenons respectivement 78 et 79% de précision. Deuxièmement, l’identification des motifs de régulation transcriptionnelle, tels les sites de liaison des facteurs de transcription, donne des indications de l’organisation de la régulation. Nous avons développé une méthode de recherche d’empreintes phylogénétiques qui consiste à découvrir des paires de mots espacés (dyades) statistiquement sur-représentées en amont de gènes orthologues bactériens. Notre méthode est particulièrement adaptée à la recherche de motifs chez les bactéries puisqu’elle profite d’une part des centaines de génomes bactériens séquencés et d’autre part les facteurs de transcription bactériens présentent des domaines Hélice-Tour-Hélice qui reconnaissent spécifiquement des dyades. Une évaluation systématique sur 368 gènes de E.coli a permis d’évaluer les performances de notre méthode et de tester l’influence de plus de 40 combinaisons de paramètres concernant le niveau taxonomique, l’inférence d’opérons, le filtrage des dyades spécifiques de E.coli, le choix des modèles de fond pour le calcul du score de significativité, et enfin un seuil sur ce score. L’analyse détaillée pour un cas d’étude, l’autorégulation du facteur de transcription LexA, a montré que notre approche permet d’étudier l’évolution des sites d’auto-régulation dans plusieurs branches taxonomiques des bactéries. Nous avons ensuite appliqué la détection d’empreintes phylogénétiques à chaque gène de E.coli, et utilisé les motifs détectés comme significatifs afin de prédire les gènes co-régulés. Au centre de cette dernière stratégie, est définie une matrice de scores de significativité pour chaque mot détecté par gène chez l’organisme de référence. Plusieurs métriques ont été définies pour la comparaison de paires de profils de scores de sorte que des paires de gènes ayant des motifs détectés significativement en commun peuvent être regroupées. Ainsi, l’ensemble des nos méthodes nous permet de reconstruire des réseaux de co-régulation uniquement à partir de séquences génomiques, et nous ouvre la voie à l’étude de l’organisation et de l’évolution de la régulation transcriptionnelle pour des génomes dont on ne connaît rien.<p><p>The purpose of my thesis is to study the evolution of regulation within bacterial genomes by using a cross-genomic comparative approach. Nowadays, numerous genomes have been sequenced facilitating in silico analysis in order to detect groups of functionally related genes and to predict the mechanism of their relative regulation. In this project, we combined prediction of operons and regulons in order to reconstruct the transcriptional regulatory network for a bacterial genome. We have implemented three methods in order to predict operons from a bacterial genome and evaluated them on hundreds of annotated operons of Escherichia coli and Bacillus subtilis. It turns out that a simple distance-based threshold method gives good results with about 80% of accuracy. The principle of this method is to classify pairs of adjacent genes as “within operon” or “transcription unit border”, respectively, by using a threshold on their intergenic distance: two adjacent genes are predicted to be within an operon if their intergenic distance is smaller than 55bp. In the second part of my thesis, I evaluated the performances of a phylogenetic footprinting approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 E.coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference, significance threshold). Motifs are assessed both at the level of correctness and significance. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. Moreover, the predictive power of the strategy, and its capability to track the evolutionary divergence of cis-regulatory motifs was illustrated with the example of LexA auto-regulation, for which our predictions are remarkably consistent with the binding sites characterized in different taxonomical groups. A next challenge was to identify groups of co-regulated genes (regulons), by regrouping genes with similar motifs, in order to address the challenging domain of the evolution of transcriptional regulatory networks. We tested different metrics to detect putative pairs of co-regulated genes. The comparison between predicted and annotated co-regulation networks shows a high positive predictive value, since a good fraction of the predicted associations correspond to annotated co-regulations, and a low sensitivity, which may be due to the consequence of highly connected transcription factors (global regulator). A regulon-per-regulon analysis indeed shows that the sensitivity is very weak for these transcription factors, but can be quite good for specific transcription factors. The originality of this global strategy is to be able to infer a potential network from the sole analysis of genome sequences, and without any prior knowledge about the regulation in the considered organism. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
5

Evaluierung des phylogenetischen Footprintings und dessen Anwendung zur verbesserten Vorhersage von Transkriptionsfaktor-Bindestellen / Evaluation of phylogenetic footprinting and its application to an improved prediction of transcription factor binding sites

Sauer, Tilman 11 July 2006 (has links)
No description available.

Page generated in 0.1329 seconds