• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 35
  • 34
  • 25
  • 6
  • 6
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 69
  • 57
  • 48
  • 40
  • 38
  • 36
  • 27
  • 26
  • 24
  • 23
  • 22
  • 21
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Genomweite Analyse der zellschichtspezifischen Expression in der Arabidopsis-Wurzel nach Inokulation mit pathogenen und mutualistischen Mikroorganismen / Genome-wide analysis of cell-type specific expressed genes in the Arabidopsis-root after inoculation with pathogenic and mutualistic microorganisms

Fröschel, Christian January 2019 (has links) (PDF)
Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine Überprüfung dieser Hypothese war bisher wegen methodischen Limitierungen nicht möglich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinitätsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, ermöglicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenbürtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Erträge positiv beeinflussen, wohingegen der vaskuläre Pilz Verticillium longisporum für erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen befällt und Ernten zerstört. Für die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen während ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgeführt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterstützt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begründbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, über den äußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verstärkung der Barriere-Funktionen dieser Zellschicht führen. So könnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen lösten besonders im Cortex die Induktion von Genen für die Biosynthese Trp-abhängiger, antimikrobieller Sekundärmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun geklärt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgelöst werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes ermöglicht nun, gezielt testbare Hypothesen zu generieren. Ein Verständnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell für die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft. / Although plant roots are surrounded by a plethora of microorganisms, their interactions are poorly characterized on a molecular level. Due to the concentric organization of the root cell-layers, it is anticipated that these layers contribute to pathogen defense by providing specific genetically defined programs, which build up barriers to restrict infection. Because of methodical limitations, this theory was not confirmed, yet. Immunoprecipitation of cell-layer specific expressed epitope-tagged ribosomes allows an isolation of ribosome/mRNA complexes that subsequently can be analyzed. This approach is called “Translating Ribosome Affinity Purification” (TRAP). It was optimized to identify cell-layer specific induced defenses and to be combined with a system to inoculate plant roots directly with soil-born microorganisms. Hence, this method enables molecular dissection of infected Arabidopsis-roots to unravel expression patterns found in rhizodermis, cortex, endodermis and central cylinder, respectively. Comparative studies were performed with three species of microorganisms having different life-styles: On the one hand the beneficial fungus Piriformospora indica, that can promote plant growth and crop yield and on the other hand two pathogens with the vascular fungus Verticillium longisporum, causing damage in oilseed rape production and the hemibiotrophic Oomycet Phytophthora parasitica, which causes plant damage on many crop plants. After performing TRAP with infected roots, the cell-type specific mRNA was analyzed via RNA-Sequencing resulting in a genome-wide impression of differentially expressed genes (Inf-TRAP-Seq). Massive differences occurred among the cell-layers approving the theory of cell-type specific immune responses. Moreover the defense responses varied according to inoculation with pathogenic or beneficial microorganisms probably due to their life-style. For example by using the newly established Inf-TRAP-Seq approach it was shown that positive regulators of cell proliferation were expressionally repressed in central cylinder of pathogen-infected roots but not in P. indica colonized roots. This correlates with the observation that root growth is suppressed after inoculation with pathogens but not after inoculation with P. indica. Although none of the three microorganisms is able to penetrate the central cylinder, differentially expressed genes were detected in this layer suggesting an exchange of signals to enable communication between inner and outer layers. Expression patterns were identified in the endodermis, that could lead to reinforcement of barrier functions of this cell-layer for example by lignification-processes. By this means the propagation of the microorganisms is restricted. All three microorganisms elicited induction of genes involved in biosynthesis of Trp-derived secondary metabolites, especially in the cortex. Now the biological relevance of these distributions can be investigated additionally. Hence, within this thesis for the first time a cell-type specific resolution was obtained regarding defense responses in the Arabidopsis-root triggered by microorganisms. A huge dataset was generated. This can be analyzed extensively by bioinformatics and its applications to set up new hypotheses, which can be tested by further approaches. An understanding of cell-type defined root defense responses is essential to facilitate new strategies for protecting crop plants against pathogens and to increase crop yield in agriculture.
222

Cellulose Biosynthesis in Oomycetes

Fugelstad, Johanna January 2008 (has links)
Oomycetes have long been considered as a separate class within the kingdom Fungi, but they are in fact closer to brown algae. They are currently classified in the Stramenopile eukaryotic kingdom, which includes heterokont algae and water molds. The major cell wall polysaccharides in Oomycetes are b-(1à3) and b-(1à6)-glucans, as well as cellulose, which has never been reported in any fungal species. Chitin - the major cell wall polysaccharide in fungi - occurs in minor amounts in the walls of some Oomycetes. Some Oomycete species are pathogens of great economical importance. For example, species of the genus Phytophthora are well studied plant pathogens that cause considerable economical losses in agriculture. Saprolegniosis, a fish disease caused by species from the genus Saprolegnia, is a major problem in the aquaculture industry and represents a threat to populations of salmonids in natural habitats. Currently, there are no chemicals available that are at the same time efficient Oomycete inhibitors, environmentally friendly and safe for human consumption of treated fishes. The biosynthesis of cellulose in Oomycetes is poorly understood, even though this biochemical pathway represents a potential target for new Oomycete inhibitors. In this work, cellulose biosynthesis was investigated in two selected Oomycetes, the plant pathogen Phytophthora infestans and the fish pathogen Saprolegnia monoica. A new Oomycete CesA gene family was identified. It contains four homologues designated as CesA1, CesA2, CesA3 and CesA4. The gene products of CesA1, 2 and 4 contain Pleckstrin Homology domains located at the N-terminus. This represents a novel feature, unique to the Oomycete CesA genes. CesA3 is the dominantly expressed CesA homologue in the mycelium of both S. monoica and P. infestans, while CesA1 and CesA2 are up-regulated in virulent life stages of P. infestans. CesA4 was expressed only in minute amounts in all investigated types of cells. Gene silencing by RNA interference of the whole CesA gene family in P. infestans lead to decreased amounts of cellulose in the cell wall. The inhibitors of cellulose synthesis DCB and Congo Red had an up-regulating effect on SmCesA gene expression, which was accompanied by an increased b-glucan synthase activity in vitro. In addition, these inhibitors slowed down the growth of the mycelium from S. monoica. Zoospores from P. infestans treated with DCB were unable to infect potato leaves and showed aberrant cell wall morphologies similar to those obtained by silencing the CesA gene family. Altogether these results show that at least some of the CesA1-4 genes are involved in cellulose biosynthesis and that the synthesis of cellulose is crucial for infection of potato by P. infestans. / QC 20101110
223

Mapping and Characterization of Phytophthora sojae and Soybean Mosaic Virus Resistance in Soybean

Tucker, Dominic M. 04 May 2009 (has links)
Phytophthora sojae, the causal organism of stem and root rot, and <i>Soybean mosaic virus</i> (SMV) cause two of the most highly destructive diseases of soybean (<i>Glycine max</i> L. Merr). <i>P. sojae</i> can be managed either through deployment of race-specific resistance or through quantitative resistance termed partial resistance. In the current study, partial resistance to <i>P. sojae</i> was mapped in an interspecific recombinant inbred line (RIL) population of <i>Glycine max</i> by <i>Glycine soja</i>. One major quantitative trait loci (QTL) on molecular linkage group (MLG)-J (chromosome 16) and two minor QTL on MLG-I (chromosome 20) and -G (chromosome 18) were mapped using conventional molecular markers. Additionally, partial resistance to <i>P. sojae</i> was mapped in the same RIL population using single feature polymorphism (SFP) markers that further fine mapped the <i>P. sojae</i> QTL and identified potential candidate genes contributing to resistance. In a separate study, race-specific resistance was characterized in PI96983 discovering a potentially new allele of <i>Rps4</i> on MLG-G. Finally, using the newly available whole-genome shotgun sequence of soybean, <i>Rsv4</i> conferring resistance to strains of SMV known in the US, was localized to an approximately 100 kb region of sequence on chromosome 2 (MLG-D1B). Newly designed PCR-based markers permit for efficient selection of <i>Rsv4</i> by breeding programs. Identified candidate genes for <i>Rsv4</i> are discussed. Genomic resources developed in all of these studies provide breeders the tools necessary for developing durable resistance to both SMV and <i>P. sojae</i>. / Ph. D.
224

Characterization of a Major Quantitative Disease Resistance Locus for Partial Resistance to <i>Phytophthora sojae</i>

Karhoff, Stephanie 04 September 2019 (has links)
No description available.
225

Protein-Protein Interaction Assay in Phytophthora sojae Using Yeast Two-Hybrid System

Aikebaierjiang, Abasi 06 May 2020 (has links)
No description available.
226

Whole Genome Bisulfite Sequencing Reveals Dynamic DNA Methylation Changes In Response to Phytophthora Sansomeana of Soybean

DiBiase, Charlotte N. 19 April 2023 (has links)
No description available.
227

Molecular identification of Phytophthora resistant genes in soybean

Liyang Chen (8744436) 29 July 2021 (has links)
<p>Phytophthora root and stem rot (PRSR), caused by oomycete <i>Phytophthora sojae</i>, is the most severe soil-borne disease of soybean (<i>Glycine max</i> (L.) Merr.) worldwide. The disease can be effectively managed by introducing resistance to <i>P. sojae</i> (<i>Rps</i>) genes into soybean cultivars by breeding, which requires continuous efforts on identification of resistance resources from soybean germplasm. Previously, two resistance genes, <i>Rps2-cas</i> (former name <i>Rps2-das</i>) and <i>Rps14 </i>(former name<i> Rps1-f</i>), were mapped by linkage analysis from soybean landraces, PI 594549 C and PI 340029, respectively. The resistance underlying PI 594592 also need further characterization given its broad resistance spectrum. In this study, <i>Rps-2cas</i> and <i>Rps14</i> were further mapped, and <i>Rps2-b</i>, was identified and initial mapped from PI 594592. Thus, this thesis research was divided into three parts for three <i>Rps</i> genes.</p><p>The first part mainly focuses advances on <i>Rps2-cas</i>. Marker-assisted spectrum analysis was performed for <i>Rps-2cas</i> to confirm its potential in disease management. A high-quality genome assembly of PI 594549 C was generated, and KASP markers were developed based on comparison between new reference and Williams 82 reference genome. The gene was further mapped to a 32.67-kb region on PI 594549 C reference genome harboring three expressed NLRs by 24 recombinants screened from a large F<sub>4</sub> population. Comparative genomics analysis suggests the only intact NBS-LRR gene in the fine mapping region is the best candidate gene for <i>Rps2cas</i>, and its function was validated by stable transformation. Evidences from other high-quality assembly genomes suggest <i>Rps2-cas</i> originated from an ancient unequal crossing over event.</p> <p>In the second part, <i>Rps14</i> was further mapped using 21 recombinants identified from a F<sub>3 </sub>population consisting of 473 plants. In commonly used Williams 82 reference genome, the assembly of fine mapping region was incomplete, and <i>Rps14</i> region showed drastic variation in size and copy number of NLRs in 23 high-quality genome assemblies, suggesting the complexity of <i>Rps14</i> region and high-quality reference sequence of donor line is required for isolation of <i>Rps14</i> candidate genes. Marker assisted resistance test showed <i>Rps14</i> had wider resistance spectrum to different <i>P. sojae </i>isolates comparing to other <i>Rps</i> genes on chromosome 3, and phylogenic analysis further supported the potential of <i>Rps14</i> to be a novel resistance gene. </p> <p>For the third part, an F<sub>2 </sub>population derived from a cross between PI 594592 and Williams was tested by <i>P. sojae</i> race 1. The 3:1 and 1:2:1 Mendelian segregation ratios were observed in F<sub>2 </sub>individuals and F<sub>2:3 </sub>families, respectively, suggesting a single dominant <i>Rps</i> gene in PI 594592. The gene was initially mapped to the distal end chromosome 16 overlapped with <i>Rps2</i>, and the gene was tentatively named as <i>Rps2-b</i>. Polymorphic SSR markers and InDel markers designed based on re-sequencing data of PI 594592 and Williams was used to genotyping all the F<sub>2:3 </sub>families, and a linkage map was constructed for <i>Rps2-b</i>. <i>Rps2-b</i> was mapped to a 461.8-kb region flanked by SSR marker Satt431 and InDel marker InDel3668 according to the reference genome (Wm82. a2). Marker-assisted resistance test showed <i>Rps2-b</i> hold a wide resistance spectrum. </p>
228

A GIANT CHIMERIC NLR GENE CONFERS BROAD RESISTANCE TO PHYTOPHTHORA ROOT AND STEM ROT OF SOYBEAN

Weidong Wang (11203863) 29 July 2021 (has links)
Phytophthora root and stem rot is the most destructive soybean soil-borne disease worldwide and can be managed using soybean cultivars with genes conferring resistance to <i>Phytophthora sojae</i>. Here we show that soybean <i>Rps11</i> is an ~27-kb nucleotide-binding site leucine-rich repeat (NLR) gene that confers broad-spectrum resistance to the pathogen. This giant gene is located in a genomic region containing 12 unusually large NLR genes of a single origin and was formed by rounds of intergenic/intragenic unequal recombination that involves the promoter regions and the LRR regions. Comparison of the genomic region in the Rps11 donor line with its corresponding regions in 29 diverse soybean genomes revealed drastic regional diversification including NLR copy number variation ranging from 5 to 23, and absence of allelic copy of <i>Rps11</i> in all 29 genomes. This study highlights innovative evolution and complexity of an NLR cluster and enables precise selection of <i>Rps11</i> for cultivar improvement.
229

Effect of Ca and pH on Disease Severity of Pink Rot Phytophthora erythroseptica in Russett Norkotah Potato Solanum tuberosum

Benson, Jared H. 08 July 2008 (has links) (PDF)
Phytophthora erythroseptica Pethyb. is a devastating fungal pathogen of potato (Solanum tuberosum). The pathogen causes a disease known as pink rot. Pink rot results in necrosis and decay of tubers; and is responsible for major losses pre and post harvest. Attributes of the disease are progressing toward epidemic proportions. To help prevent such dramatic outbreaks of the disease, understanding the factors associated with incidence will provide opportunities to control the pathogen. A link between pH and disease severity has been observed. We studied the effects of pH and Ca to determine their influence on disease development. Low pH and Ca deficiencies are often inter-related factors that can be causal of one another. The pH effect could be due to either H+ or Ca ions. To separate their interactive effects we tested each variable individually using hydroponics and nutrient solutions. We assessed disease severity by assigning an Infection Coefficient (IC) to each root and stolon samples. The IC values were determined by quantifying DNA and then creating a ratio of host to pathogen DNA within root tissue. The DNA was measured by quantitative RT PCR. Statistical analysis showed significance in greater pathogen presence at more acidic pH and lower levels of available Ca. Significant reductions in IC values were observed when pH was elevated above pH 7. There was a notable increase in colonizing pathogen DNA at pH 5. Ca was significant, and as levels of soluble Ca increased the degree of disease severity became smaller. The effect of Ca was found not to be dependent upon pH. These results suggest immediate and cost effective applied management strategies to reduce incidence and disease severity outbreaks. Amending the soil with lime to increase soil pH and Ca content is one such potential method.
230

Cytosine Methylation of Phytophthora sojae by Methylated DNA Immunoprecipitation

Spangler, Maribeth 25 July 2012 (has links)
No description available.

Page generated in 0.032 seconds