1 |
The Development of an Analytical Model to Predict Thoracic Response from Dynamic Individual Rib TestsSreedhar, Akshara January 2021 (has links)
No description available.
|
2 |
Non-global regression modellingHuang, Yunkai 21 June 2016 (has links)
In this dissertation, a new non-global regression model - the partial linear threshold regression model (PLTRM) - is proposed. Various issues related to the PLTRM are discussed.
In the first main section of the dissertation (Chapter 2), we define what is meant by the term “non-global regression model”, and we provide a brief review of the current literature associated with such models. In particular, we focus on their advantages and disadvantages in terms of their statistical properties. Because there are some weaknesses in the existing non-global regression models, we propose the PLTRM. The PLTRM combines non-parametric modelling with the traditional threshold regression models (TRMs), and hence can be thought of as an extension of the later models. We verify the performance of the PLTRM through a series of Monte Carlo simulation experiments. These experiments use a simulated data set that exhibits partial linear and partial nonlinear characteristics, and the PLTRM out-performs several competing parametric and non-parametric models in terms of the Mean Squared Error (MSE) of the within-sample fit.
In the second main section of this dissertation (Chapter 3), we propose a method of estimation for the PLTRM. This requires estimating the parameters of the parametric part of the model; estimating the threshold; and fitting the non-parametric component of the model. An “unbalanced penalized least squares” approach is used. This involves using restricted penalized regression spline and smoothing spline techniques for the non-parametric component of the model; the least squares method for the linear parametric part of the model; together with a search procedure to estimate the threshold value. This estimation procedure is discussed for three mutually exclusive situations, which are classified according to the way in which the two components of the PLTRM “join” at the threshold. Bootstrap sampling distributions of the estimators are provided using the parametric bootstrap technique. The various estimators appear to have good sampling properties in most of the situations that are considered. Inference issues such as hypothesis testing and confidence interval construction for the PLTRM are also investigated.
In the third main section of the dissertation (Chapter 4), we illustrate the usefulness of the PLTRM, and the application of the proposed estimation methods, by modelling various real-world data sets. These examples demonstrate both the good statistical performance, and the great application potential, of the PLTRM. / Graduate
|
3 |
[en] TS-TARX: TREE STRUCTURED - THRESHOLD AUTOREGRESSION WITH EXTERNAL VARIABLES / [pt] TS-TARX: UM MODELO DE REGRESSÃO COM LIMIARES BASEADO EM ÁRVORE DE DECISÃOCHRISTIAN NUNES ARANHA 28 January 2002 (has links)
[pt] Este trabalho propõe um novo modelo linear por partes
para a extração de regras de conhecimento de banco de
dados. O modelo é uma heurística baseada em análise de
árvore de regressão, como introduzido por Friedman (1979)
e discutido em detalhe por Breiman (1984). A motivação
desta pesquisa é trazer uma nova abordagem combinando
técnicas estatísticas de modelagem e um algoritmo de
busca por quebras eficiente. A decisão de quebra usada no
algoritmo de busca leva em consideração informações do
ajuste de equações lineares e foi implementado tendo por
inspiração o trabalho de Tsay
(1989). Neste, ele sugere um procedimento para construção
um modelo para a análise de séries temporais chamado TAR
(threshold autoregressive model), introduzido por
Tong (1978) e discutido em detalhes por Tong e Lim (1980)
e Tong (1983). O modelo TAR é um modelo linear por partes
cuja idéia central é alterar os parâmetros do modelo
linear autoregressivo de acordo com o valor de uma
variável observada, chamada de variável limiar. No
trabalho de Tsay, a Identificação do número e
localização do potencial limiar era baseada na analise de
gráficos. A idéia foi então criar um novo algoritmo todo
automatizado. Este processo é um algoritmo que preserva
o método de regressão por mínimos quadrados recursivo
(MQR) usado no trabalho de Tsay. Esta talvez seja uma das
grandes vantagens da metodologia introduzida neste
trabalho, visto que Cooper (1998) em seu trabalho de
análise de múltiplos regimes afirma não ser possível
testar cada quebra. Da combinação da árvore de decisão
com a técnica de regressão (MQR), o modelo se tornou o
TS-TARX (Tree Structured - Threshold AutoRegression with
eXternal variables). O procedimento consiste numa busca
em árvore binária calculando a estatística F para a
seleção das variáveis e o critério de informação BIC para
a seleção dos modelos. Ao final, o algoritmo gera como
resposta uma árvore de decisão (por meio de regras) e as
equações de regressão estimadas para cada regime da
partição. A principal característica deste tipo de
resposta é sua fácil interpretação. O trabalho conclui
com algumas aplicações em bases de dados padrões
encontradas na literatura e outras que auxiliarão o
entendimento do processo implementado. / [en] This research work proposes a new piecewise linear model to
extract knowledge rules from databases. The model is an
heuristic based on analysis of regression trees, introduced
by Friedman (1979) and discussed in detail by Breiman
(1984). The motivation of this research is to come up with
a new approach combining both statistical modeling
techniques and an efficient split search algorithm.
The split decision used in the split search algorithm
counts on information from adjusted linear equation and was
implemented inspired by the work of Tsay (1989). In his
work, he suggests a model-building procedure for a
nonlinear time series model called by TAR (threshold
autoregressive model), first proposed by Tong (1978) and
discussed in detail by Tong and Lim (1980) and Tong (1983).
The TAR model is a piecewise linear model which main idea
is to set the coefficients of a linear autoregressive
process in accordance with a value of observed variable,
called by threshold variable. Tsay`s identification of the
number and location of the potential thresholds was based
on supplementary graphic devices. The idea is to get the
whole process automatic on a new model-building process.
This process is an algorithm that preserves the method of
regression by recursive least squares (RLS) used in Tsay`s
work. This regression method allowed the test of all
possibilities of data split. Perhaps that is the main
advantage of the methodology introduced in this work,
seeing that Cooper, S. (1998) said about the impossibility
of testing each break.Thus, combining decision tree
methodology with a regression technique (RLS), the model
became the TS-TARX (Tree Structured - Threshold
AutoRegression with eXternal variables). It searches on a
binary tree calculating F statistics for variable selection
and the information criteria BIC for model selection. In
the end, the algorithm produces as result a decision tree
and a regression equation adjusted to each regime of the
partition defined by the decision tree. Its major advantage
is easy interpretation.This research work concludes with
some applications in benchmark databases from literature
and others that helps the understanding of the algorithm
process.
|
Page generated in 0.0717 seconds