• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Electroacoustic Sensors for Biomolecular Interaction Analysis

Anderson, Henrik January 2009 (has links)
Biomolecular interaction analysis to determine the kinetics and affinity between interacting partners is important for the fundamental understanding of biology, as well as for the development of new pharmaceutical substances. A quartz crystal microbalance instrument suitable for kinetics and affinity analyses of interaction events was developed. The functionality of the sensor system was demonstrated by development of an assay for relative affinity determination of lectin-carbohydrate interactions. Sensor surfaces allowing for effective immobilization of one interacting partner is a key functionality of a biosensor. Here, three different surfaces and immobilization methods were studied. First, optimized preparation conditions for sensor surfaces based on carboxyl-terminated self assembled monolayers were developed and were demonstrated to provide highly functional biosensor surfaces with low non-specific binding. Second, a method allowing for immobilization of very acidic biomolecules based on the use of an electric field was developed and evaluated. The electric field made it possible to immobilize the highly acidic C-peptide on a carboxylated surface. Third, a method for antibody immobilization on a carboxyl surface was optimized and the influence of immobilization pH on the immobilization level and antigen binding capacity was thoroughly assessed. The method showed high reproducibility for a set of antibodies and allowed for antibody immobilization also at low pH. Three broadly different strategies to increase the sensitivity of electroacoustic sensors were explored. A QCM sensor with small resonator electrodes and reduced flow cell dimensions was demonstrated to improve the mass transport rate to the sensor surface. The use of polymers on QCM sensor surfaces to enhance the sensor response was shown to increase the response of an antibody-antigen model system more than ten-fold. Moreover, the application of high frequency thin film bulk acoustic resonators for biosensing was evaluated with respect to sensing range from the surface. The linear detection range of the thin film resonator was determined to be more than sufficient for biosensor applications involving, for instance, antibody-antigen interactions. Finally, a setup for combined frequency and resistance measurements was developed and was found to provide time resolved data suitable for kinetics determination. / wisenet
2

CMOS Integrated Resonators and Emerging Materials for MEMS Applications

Jackson Anderson (16551828) 18 July 2023 (has links)
<p>With the advent of increasingly complex radio systems at higher frequencies and the slowing of traditional CMOS process scaling with power concerns, there has been an increased focus on integration, architectural, and material innovations as a continued path forward in MEMS and logic. This work presents the first comprehensive experimental study of resonant body transistors in a commercial 14nm FinFET process, demonstrating differential radio frequency transduction as a function of transistor biasing through electrostatic, piezoresistive, and threshold voltage modulation. The impact of device design changes on unreleased resonator performance are further explored, highlighting the importance of phononic confinement in achieving an f*Q product of 8.2*10<sup>11</sup> at 11.73 GHz. Also shown are initial efforts towards the understanding of coupled oscillator architectures and a perovskite nickelate material system. Finally, development of resonators based on two-dimensional materials, whose scale is particularly attractive for high-frequency nano-mechanical resonators and acoustic devices, is discussed. Experiments towards dry transfer of tellurene flakes using geometries printed via two photon polymerization are presented along with optimization of a fabrication process for gated RF devices, presenting new opportunities for high-frequency electro-mechanical interactions in this topological material. </p>

Page generated in 0.115 seconds