Spelling suggestions: "subject:"hållbara"" "subject:"hållbara""
11 |
Early Archaean crustal evolution: evidence from ~3.5million year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, AustraliaGreen, Michael Godfrey January 2001 (has links)
In the Pilgangoora Belt of the Pilbara Craton, Australia, the 3517 Ma Coonterunah Group and 3484-3468 Ma Carlindi granitoids underlie the 3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial e(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution. The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism. Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth is favoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial e(Nd) and e(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.
|
12 |
Understanding the mechanisms of oxidation of pyritic shale in mining waste and the influence of shale properties on acid mine drainage in the Pilbara BasinSong, Meining January 2010 (has links)
[Truncated abstract] The influence of environmental conditions and properties of pyritic shale in the mining waste from Mt. Whaleback in Western Australia, in particular the inclusions and encapsulation of pyrite on the oxidation of pyritic shale and its subsequent acid mine drainage, was studied by employing an isothermal batch reactor system and QEMSCAN technique. The experimental technique was validated by comparing the experimental results obtained in this study with the literature data. It was found that the presence of water significantly accelerates the rate of shale oxidation. Weathering of the shale samples was found to influence the O2 consumption rate. It was also found that shale properties have a major effect on the oxidation rate and thereby affect the acid generation. Static test methods (Sobek and Lawrence) were employed to test the Neutralisation Potential (NP) of more than 100 actual and composite samples including pyritic shale samples, rock samples, mineral samples, various pyrite-mineral, pyrite-shale, and pseudo-shale blends. The influence of sample properties (bulk elemental composition, and mineralogy), test technique (Sobek and Lawrence) and associated variables (acid strength and volume) on the acid neutralisation potential of the samples was studied. It was found that the Sobek method produced consistently higher NP results under comparable acid conditions to those obtained with the Lawrence method. The theoretical NP values of individual minerals were calculated based on the mineral composition combined with the acid neutralising equations and ideal chemical formula. ... To experimentally model the major mineral phases, 11 minerals were used to produce pyrite-mineral blends and pseudo-shales, whose compositions mimic those of the actual shales studied. Mineral blends were employed to evaluate and contrast their individual acid generation or neutralisation behaviour with binary and higher order interactions. Blends of pyrite with some selected shales were also employed in this study. It was found that interactions can occur between the multiple mineral components which can enhance the rate of acid generation beyond that of the individual behaviour. It was found that the products from the pre-oxidation of shales, the properties and morphology of a sample such as the surface area, encapsulation, the mineralogy and pH all play a significant role in the acid generation and neutralisation rates. However, the absolute rate of acid generation appears to be most sensitive to the components such as Fe3+, which contribute to its reaction mechanisms. This investigation has provided a scientific insight into the acid generation and neutralisation behaviour of pyritic shale in relation to its mineralogy. It was found that the relative instantaneous rates of acid generation and consumption for individual minerals can be significantly different to that of their total potentials for acid generation and neutralisation. The significantly different behaviour of the actual and pseudo shales suggests that at low pH, there may be other mechanisms underlying the net capacity and rates of shales to generate or consume acid than bulk mineralogy. These findings have significant implications to the mining industry operating in reactive grounds.
|
13 |
Early Archaean crustal evolution: evidence from ~3.5million year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, AustraliaGreen, Michael Godfrey January 2001 (has links)
In the Pilgangoora Belt of the Pilbara Craton, Australia, the 3517 Ma Coonterunah Group and 3484-3468 Ma Carlindi granitoids underlie the 3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial e(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution. The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism. Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth is favoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial e(Nd) and e(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.
|
14 |
Environmental stability : its role in structuring fish communities and life history strategies in the Fortescue River, Western AustraliaBeesley, Leah Unknown Date (has links)
[Truncated abstract] This study investigated the organisational role of environmental stability on the fish communities that inhabit the Fortescue River, an intermittent and variable system in north-Western Australia. It did so by examining the relationships between pool stability (measured by persistence of water through time, and variation in maximum pool depth through time) and the number and type of species within pools, temporal fluctuations in total fish abundance and intra-specific abundance, population size frequency distributions, and growth rate. It also examined the association between life history traits and the stability of the environments occupied within the river, and the stability of the river at large. The results indicated that environmental stability was the major factor structuring the fish communities. Among-pool comparisons revealed that unstable pools contained fewer species, a greater fraction of juvenile size classes, and underwent greater fluctuations in total and intra-specific numerical abundance through time, than stable pools . . . Stability affected community structure by determining (or describing) the probability that a pool would undergo periods of extreme shrinkage, that is, the likelihood that fish will be exposed to extreme physico-chemical fluctuations and complete eradication. While the physical environment (acting through stability) primarily structured the fish communities of the Fortescue River there was indirect evidence that even within this variable river system, biological interactions played a role, albeit minor. Future investigations into the role of environmental stability will benefit from the use of accepted and quantitative methods by all stream ecologists.
|
15 |
Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite MineralisationsDittrich, Thomas 14 September 2017 (has links) (PDF)
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail.
Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn).
In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia.
In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites.
Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system.
This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe.
All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe.
Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide.
Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs.
The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems.
LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation.
Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series.
The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results.
Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems.
This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide. / Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden.
Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt.
Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden.
Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden.
Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen.
Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin).
Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren.
Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet.
Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen.
LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven
Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein.
Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation.
Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten.
Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben.
Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können.
Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen.
Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen
in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen.
|
16 |
Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite MineralisationsDittrich, Thomas 27 April 2017 (has links)
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail.
Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn).
In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia.
In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites.
Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system.
This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe.
All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe.
Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide.
Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs.
The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems.
LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation.
Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series.
The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results.
Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems.
This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide.:Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1. Introduction 1
1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Fundamentals 7
2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13
2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34
2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40
2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43
3. Geological Settings of Archean Cratons 47
3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48
3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49
3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52
3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58
3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62
3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70
3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76
3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76
3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85
3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91
3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99
3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101
3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105
3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106
4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115
4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115
4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120
4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123
5. Petrography and Mineralogy 139
5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141
5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141
5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162
6. Geochemistry 165
6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7. Geochronology 193
7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203
7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8. Fluid Inclusion Study 211
8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212
9. Stable and Radiogenic Isotopes 217
9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217
9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220
9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.Discussion 227
10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227
10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227
10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229
10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233
10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233
10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243
10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252
10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT
Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11.Summary and Conclusions 267
References 273
Lists of Abbreviations 309
General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
List of Figures 311
List of Tables 315
Appendix 317
A. Legend for Topographic Maps 319
B. Sample List 323
C. Methodology 331
C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331
C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336
C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338
D. Data – Mineral Liberation Analysis 341
E. Data – Geochemistry 345
F. Data – Geochronology 349
G. Data – Stable and Radiogenic Isotopes 353 / Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden.
Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt.
Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden.
Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden.
Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen.
Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin).
Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren.
Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet.
Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen.
LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven
Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein.
Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation.
Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten.
Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben.
Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können.
Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen.
Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen
in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen.:Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1. Introduction 1
1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Fundamentals 7
2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13
2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34
2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40
2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43
3. Geological Settings of Archean Cratons 47
3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48
3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49
3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52
3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58
3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62
3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70
3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76
3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76
3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85
3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91
3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99
3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101
3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105
3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106
4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115
4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115
4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120
4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123
5. Petrography and Mineralogy 139
5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141
5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141
5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162
6. Geochemistry 165
6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7. Geochronology 193
7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203
7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8. Fluid Inclusion Study 211
8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212
9. Stable and Radiogenic Isotopes 217
9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217
9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220
9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.Discussion 227
10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227
10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227
10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229
10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233
10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233
10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243
10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252
10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT
Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11.Summary and Conclusions 267
References 273
Lists of Abbreviations 309
General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
List of Figures 311
List of Tables 315
Appendix 317
A. Legend for Topographic Maps 319
B. Sample List 323
C. Methodology 331
C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331
C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336
C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338
D. Data – Mineral Liberation Analysis 341
E. Data – Geochemistry 345
F. Data – Geochronology 349
G. Data – Stable and Radiogenic Isotopes 353
|
17 |
The Relationship between Rock Mass Conditions and Alteration and Weathering of the Lower Hamersley Group Iron Formations, Western AustraliaDonders, Hanna Tiare January 2009 (has links)
The Pilbara region of Western Australia hosts the Hamersley Province, an area of abundant iron ore resources located in the lower Hamersley Groups, Brockman and Marra Mamba Iron Formations. This study consists of a geotechnical and a geochemical and mineralogical investigation into the Banded Iron Formation (BIF) and shale deposits of the lower Hamersley Group that reside in the pit walls of RTIO mines in Western Australia. Areas throughout Tom Price, Paraburdoo, Marandoo and West Angelas iron ore mines are geotechnically investigated for rock mass conditions through the use of the Slope Mass Rating (SMR) classification system and through point load and slake durability testing. Selected samples from these areas were then geochemically and mineralogically tested by X-ray Fluorescence (XRF), X-ray Diffraction (XRD) and microscopic analysis, to determine the geochemical and mineralogical changes of BIF and shale as they alter and weather through hypogene and supergene alteration and Recent weathering. It was found that the most efficient method for determining the alteration and/or weathering of lower Hamersley Group BIF and shale deposits was by the use of a chemical alteration index, calculated from enriched and depleted major elements in the BIF and shale as they alter and weather. It has been suggested here that this Pilbara Iron alteration index can be calculated efficiently and effectively from geochemical testing in intervals down boreholes throughout future or developing open pit mines to assist in estimating slope stability conditions. It is also suggested that many boreholes should be analysed in section or in 3D space to create cross sections or block models showing the varying extent of alteration and weathering throughout the area being studied. From the geotechnical investigation, it was found that the weakest region, in terms of pit slope stability, were the highly and extremely altered and/or weathered regions with Pilbara Iron alteration indices of between 61 and 80, and 81 and 100, respectively. If these zones are identified, slope stability analysis can be focused on these geotechnically vulnerable areas. Slope stability analysis should be completed by using a suitable technique, such as by the use of SMR, which, along with other risk identification measures, will identify potentially unstable areas and suggest the required course of action. Further hazard and risk analysis should be undertaken in potentially unstable areas and remedial measures undertaken as appropriate. Thereby, the Pilbara Iron alteration index can be used in the Hamersley Province as a predictive tool for pit slope stability.
|
Page generated in 0.0317 seconds