• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 8
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 89
  • 44
  • 39
  • 25
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The type IVa pilus machine is pre-installed during cell division

Carter, Tyson January 2016 (has links)
Type IV pili (T4P) are protein filaments found on the surface of a variety of bacterial species and mediate biofilm formation, adhesion, and flagellum-independent twitching motility. The biogenesis of T4P is dependent on a cell envelope-spanning, multiprotein complex that localizes to the poles in rod-shaped cells. How these proteins localize and cross the peptidoglycan (PG) layer in the absence of dedicated PG-hydrolyzing enzymes is unknown. In P. aeruginosa, PilMNOP interact to form the alignment subcomplex, connected via PilP to PilQ, which forms the outer membrane secretin. We hypothesized that polar localization and integration of the T4P machinery was driven by ordered recruitment to future sites of cell division, placing assembly system components at division septa in the correct position before daughter-cell separation. To determine which T4P components are essential for localization of the complex, we fused the T4P inner membrane assembly protein PilO to the fluorescent protein mCherry to monitor its localization. mCherry-PilO localized to the cell poles and midcell in wild type bacteria. However, it was delocalized in a strain lacking PilQ. A PilQ-mCherry fusion localized to the cell poles, likely through its putative septal PG binding AmiN domains, suggesting that PilQ binds PG and thus localizes its partners to future sites of cell division. In the absence of the associated pilotin protein (PilF), which is required for PilQ multimerization in the OM, T4P components were polarly localized, implying that localization is not dependent on secretin formation. The results of this research support a pre-installation mechanism for integration of protein complexes in the gram negative cell envelope without PG hydrolysis, which may be applicable to other systems. / Thesis / Master of Science (MSc)
32

Discovery and demonstration of functional type IV pili production and post-translational modification by a medically relevant <i>Acinetobacter</i> species

Harding, Christian Michael 21 May 2015 (has links)
No description available.
33

Single point mutations in type IV pilus fiber proteins restore twitching in ΔpilU mutants

Barnshaw, Rebecca 11 1900 (has links)
Type IV pili (T4P) are long adhesive surface filaments produced by bacteria and are a key virulence factor for many pathogens. T4P are produced by a dynamic intracellular nanomachine that facilitates the assembly (extension) and disassembly (retraction) of pili. Pilus dynamics are enabled by the motor subcomplex of the nanomachine, where cytoplasmic ATPases power pilus assembly (PilB) and disassembly (PilT and PilU). In many, but not all, T4P expressing bacteria – including our model organism Pseudomonas aeruginosa – two retraction ATPases are required for functional retraction, which can be assessed by measuring twitching motility. Deletion of pilT results in loss of twitching and phage susceptibility (another hallmark of pilus function) while deletion of pilU results in loss of twitching but retention of phage susceptibility, indicating pili can still be retracted. We hypothesized that PilU adds to the force of pilus retraction, facilitating disassembly when the fiber is under tension. We mutated ΔpilU and pilU::Tn5 strains with ethyl methanesulfonate and screened for gain-of-twitching mutants. Whole genome sequencing revealed multiple point mutations in the major pilin protein PilA or the pilus adhesin, PilY1. These point mutations were recapitulated in a ΔpilU strain and restored twitching to varying degrees. Complementation of pilA point mutants with pilU in trans influenced the twitching zone of only one mutant, and in trans expression of wild-type pilA resulted in a significant reduction in twitching in most. The contribution of PilU to the force of pilus retraction was further investigated by a polyacrylamide micropillar assay, where no pulling events could be detected for either ΔpilT or ΔpilU mutants. Exopolysaccharide production, a proxy for surface sensing, was uncoupled from twitching motility in the pilA point mutants. These results are a significant step forward to understanding what PilU does and, provides insight to the dynamics of the pilus fiber. / Thesis / Master of Science (MSc) / Pseudomonas aeruginosa is a bacterium that causes serious infections. P. aeruginosa uses adhesive, “grappling hook” filaments called Type IV pili (T4P) to stick to its hosts. T4P can be repeatedly extended and retracted, allowing the bacteria to crawl on surfaces (twitching) but making them susceptible to bacteriophages, viruses that attach to pili then kill the bacterial cells. The motor proteins PilT and PilU are required for twitching, but only PilT is essential for phage killing, implying that pili are retracted even when PilU is missing. Here we hypothesized that PilU is important for twitching because it helps generate force for retraction when pili are under tension. We isolated multiple mutations in pilus components that restored twitching in the absence of PilU, and propose that these mutations allow for easier retraction of pili. This information helps us understand how T4P help the bacteria to spread during infection.
34

Characterization of the PilS-PilR two component regulatory system of Pseudomonas aeruginosa

Kilmury, Sara LN 11 1900 (has links)
Two-component regulatory systems are an important means for most prokaryotes to adapt quickly to changes in their environment. Canonical systems are composed of a sensor kinase, which detects signals that trigger autophosphorylation, and a response regulator, which imparts changes within the cell, usually through transcriptional regulation. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a plethora of two-component systems including the PilS-PilR sensor-regulator pair, which directs transcription of the major component of the type IV pilus (T4P) system, pilA, in response to an unknown signal. T4P are surface appendages that are required for full virulence, as they perform several important functions including twitching motility, cell surface attachment, surface sensing, and biofilm formation. While loss of pili is known to decrease virulence, the effect of surplus surface pili on pathogenicity was unknown. In other T4P-expressing bacteria, PilR regulates the expression of non-T4P related genes, but its regulon in P. aeruginosa was undefined. Here, we identify PilA as an intramembrane signal for PilS, regulating its own expression. When PilS-PilR function is altered through the use of activating point mutations, which induce hyperpiliation, pathogenicity in C. elegans was significantly impaired compared to both wild type and non-piliated strains of P. aeruginosa. This phenotype could be recapitulated using other hyperpiliation-inducing mutations, providing evidence that over production of surface pili likely prevents productive engagement of contact-dependent virulence factors. Last, transcriptomic analyses revealed that expression of over 50 genes – including several involved in flagellar biosynthesis and function – is modulated by PilSR, suggesting coordinate regulation of motility in P. aeruginosa. Together, this work provides new information on the control of pilA transcription and suggests novel roles for surface pili and the PilSR two component system in virulence and swimming motility, respectively. The knowledge gained from this work could be applied to the development of a PilS or PilR based anti-virulence therapeutic. / Thesis / Doctor of Philosophy (PhD) / Pseudomonas aeruginosa is a Gram negative bacterium and a common cause of hospital acquired infections. The World Health Organization recently ranked P. aeruginosa as one of the top “priority pathogens” for which new treatments are desperately needed, in part due to its intrinsic resistance to many antibiotics. Among the key features that contribute to the infectivity of P. aeruginosa are its Type IV pili (T4P), which are flexible, retractile surface appendages involved in cell surface attachment, movement across solid surfaces and other important functions. Production of the major pilin protein, PilA, which forms most of the pilus, is tightly controlled by the two-component regulatory system, PilS-PilR, where PilS is a sensor and PilR is a regulator that directly controls pilin expression. The aim of this work was to identify the signal(s) detected by the sensor, as well as additional genes or systems under PilSR control. We showed that the pilin protein interacts directly with the sensor to control its own expression, and that dysregulation of the PilS-PilR two-component system impairs both pathogenicity and other forms of motility. Together, the data presented here provide insight into how PilS-PilR control expression of systems required for virulence of P. aeruginosa and highlight the potential of these proteins as possible therapeutic targets.
35

Pseudomonas aeruginosa minor pilins regulate virulence via modulation of FimS-AlgR activity

Marko, Victoria January 2017 (has links)
The type IV pilus is a motility organelle found in a range of bacteria, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The principle structural protein of the pilus is the major pilin, PilA, while a set of low abundance “minor pilins” are proposed to constitute the pilus tip. The minor pilins, FimU and PilVWXE, along with the non-pilin protein PilY1, prime assembly of surface-exposed pili. The fimU-pilVWXY1E operon is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 is an adhesin and mechanosensor that, along with PilW and PilX, triggers virulence upon surface attachment. Here, we aimed to uncover the mechanism for PilWXY1-mediated virulence. We hypothesized that loss of PilWXY1 would relieve feedback inhibition on FimS-AlgR, resulting in increased transcription of the minor pilin operon and dysregulation of virulence factors in the AlgR regulon. Caenorhabditis elegans slow killing assays revealed that pilW, pilX, and pilY1 mutants had reduced virulence relative to a pilA mutant, implying a role in virulence independent of pilus assembly. FimS-AlgR were required for the increased promoter activity of the minor pilin operon upon loss of pilV, pilW, pilX, or pilY1. Overexpression or hyperactivation of AlgR by point mutation led to reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants were dependent on FimS-AlgR expression. We propose that PilWXY1 inhibit their own expression at the level of FimS-AlgR, such that loss of pilW, pilX, or pilY1 leads to FimS-mediated activation of AlgR, and reduced expression of acute-phase virulence factors. Accumulation of mutations in the minor pilin operon may represent an evolutionary strategy for P. aeruginosa populations in chronic lung infections, as loss of PilWXY1 would upregulate the expression of AlgR-dependent virulence factors – such as alginate – characteristic of such infections. / Thesis / Master of Science (MSc) / Pseudomonas aeruginosa is a bacterium that causes dangerous infections, including lung infections in cystic fibrosis patients. The bacteria use many strategies to infect their hosts, one of which involves a grappling hook-like fibre called the type IV pilus. There are many components involved in assembly and function of the pilus, including five proteins called “minor pilins” and a larger protein called PilY1 that may help the pilus detect surface attachment. We used a roundworm infection model to show that loss of PilY1 and specific minor pilins leads to delayed killing, while loss of other pilus proteins has no effect on worm survival. This effect was due to increased activation of a regulatory system called FimS-AlgR that inhibits expression of other factors used by this bacterium to infect its hosts. By studying how P. aeruginosa causes infection, we can design better strategies to disarm it and reduce the severity of infections.
36

The Type IV Pilus Assembly ATPase PilB as a Regulator of Biofilm Formation and an Antivirulence Target

Dye, Keane 02 June 2022 (has links)
Bacterial type IV pili (T4P) are filamentous surface appendages with a variety of functions including motility, surface attachment, and biofilm formation. In many species of bacteria a clear understanding of how the functions of T4P in lifestyle switching are regulated remains to be elucidated. Here, we focus on understanding the regulation of the T4P assembly ATPase PilB. We examined its interactions with the secondary messenger cyclic-di-GMP (cdG). Specifically we investigated how cdG binding regulates PilB functions not only as the assembly ATPase, but also as an EPS signaling molecule in Myxococcus xanthus biofilm regulation. Chapter 2 focuses on the development of a microplate-based biofilm assay for M. xanthus. This new assay allows for the analysis of the M. xanthus submerged biofilms under vegetative conditions in a high throughput format which has been absent in the published literature. M. xanthus biofilm formation tightly correlates with EPS production, suggesting that the assay can be used as a convenient method of examining EPS production. Chapter 3 examines the regulation of M. xanthus PilB (MxPilB) by cdG binding in vivo. We carried out a mutational analysis of the MshEN cdG binding domain in MxPilB. Mutations were created that either diverge with or converge from the MshEN consensus sequence. These two classes of MxPilB variants are expected to either decrease or increase cdG binding affinity, respectively. We examined the motility, EPS production, and piliation phenotypes of these mutants. Our results were consistent with a model where the function of MxPilB is altered in response to cdG binding, and suggesting that PilB responds to different thresholds of cdG concentration. In Chapter 4, we examine the ligand binding to the N-terminal cdG binding domain and C-terminal ATPase domain of Chloracidobacterium thermophilum PilB (CtPilB) in vitro. Our results confirm that these two domains bind to their respective ligands specifically, and demonstrate these domains communicate with each other in response to ligand binding. The results from all of the studies help us to establish a model where cdG binding fine tunes the functions of PilB to regulate the switch of bacteria between the motile and planktonic states. In addition to their roles in motility and biofilm formation, T4P are key virulence factors in many significant human pathogens. Antivirulence chemotherapeutics are considered to be a promising alternative to antibiotics, as they target disease processes rather than bacterial viability. Because PilB is essential for T4P biogenesis, we sought to identify PilB inhibitors for the development of antivirulence therapies. In Chapter 5, we describe the development of the first high throughput screen (HTS), for PilB inhibitors. This assay is uses the reduction of the binding of a fluorescent ATP analog to CtPilB in vitro, leading to the discovery of the plant flavonoid quercetin as a PilB inhibitor. Using M. xanthus as a model a bacterium, quercetin was found to inhibit T4P-dependent motility and T4P assembly in vivo. Builds on this initial success with CtPilB, Chapter 6 describes the development and implementation of a second HTS based on the inhibition of CtPilB as an ATPase. Screening a large chemical library led to the identification of benserazide and levodopa as CtPilB inhibitors. We show that both compounds inhibit T4P assembly in M. xanthus without any detrimental effects on bacterial growth. Furthermore we demonstrate that both levodopa and benserazide inhibit T4P-mediated motility in Acinetobacter nosocomialis, a human pathogen, providing the first evidence that the compounds identified with CtPilB can be effective against a pathogenic bacterium. Both of these studies validate the effectiveness not only of our HTSs, with of CtPilB as a model protein for the identification of PilB inhibitors. / Doctor of Philosophy / Bacteria can be motile or sessile. Motile bacteria can use hair like structures on their surface, called pili, to move in their natural environment, whereas sessile bacteria produce intricate structures attached to solid surfaces known as biofilms. Bacteria are able to switch between being motile and sessile states depending on their environment conditions. However, it isn't clear how this switch is controlled in bacteria that use pili to move. To answer this question, we studied how PilB the protein that assembles pili, might control this switching process. We specifically investigated PilB because it has two known roles. The first is that it can assemble pili, to enable pili-mediated motility. The second is that it can stimulate or promote biofilm formation. This places PilB at the intersection of these two lifestyles, suggesting that this protein may play a key role in deciding whether a bacterium is to be motile or sessile. Another important reason to understand how PilB functions is because pili are used by some antibiotic resistant pathogenic bacteria. Since PilB is essential for the formation of pili, if the actions of PilB could be blocked, bacteria would be unable to make pili. This could stop bacteria from causing disease. By searching for new chemicals which stop PilB from creating pili, we can potentially identify new drugs to treat bacterial infections.
37

Use of an Inducible Promoter to Characterize Type IV Pili Homologues in Clostridium perfringens

Hartman, Andrea H. 18 October 2012 (has links)
Researchers of <i>Clostridium perfringens</i>, a Gram-positive anaerobic pathogen, were lacking a tightlyregulated, inducible promoter system in their genetic toolbox. We constructed a lactose-inducible plasmid-based system utilizing the transcriptional regulator, BgaR. Using the <i>E. coli</i> reporter GusA, we characterized its induction in three different strains of <i>C. perfringens</i>. We then used a newly-developed mutation system to create in-frame deletion mutants in three genes with homology to Type IV pilins, and we used the promoter system described above to complement the mutants. We analyzed each pilin for localization and expression, as well as tested each of the mutants for various phenotypes frequently associated with type IV pili (TFP) and type II secretion systems. PilA2, PilA3, and PilA4 localized to the poles of the cells. PilA2 was expressed in the wildtype when <i>C. perfringens</i> was grown on agar plates, and the PilA3 mutant lacked a von Willebrand factor A domain-containing protein in its secretome. We used our promoter system to express GFP-tagged versions of the TFP ATPase homologues and view them in cells growing on surfaces. We saw that PilB1 and PilB2 co-localized nearly all of the time, while a portion of PilT was independent of the PilB proteins. PilT appeared necessary for the localization of PilB, and it localized independently of TFP proteins in <i>Bacillus subtilis</i>. PilT's typical localization in <i>Bacillus subtilis</i> was disrupted when the GTPase and polymerization activity of cell division protein FtsZ was blocked, suggesting that PilT associates with cell division proteins. / Master of Science
38

Characterization of Type IV Pilus System Genes and Their Regulation in Clostridium perfringens

Murray, Samantha Rose 06 June 2017 (has links)
Clostridium perfringens is a Gram-positive (Gr+) anaerobic pathogen that was found to contain Type IV pilus (T4P) system genes within the genomes of all its sequenced strains. T4P are widely used in Gram-negative organisms for aggregation, biofilm formation, adherence, and DNA uptake. Because few examples of T4P-utilizing Gram-positive bacteria are studied to date, we wanted to characterize the T4P system in this Gr+ bacterium. To understand the regulation of T4P genes and therefore better understand their expression, we employed the highly powerful next-generation sequencing tool RNA-seq in a variety of conditions. RNA-seq uncovered previously unknown regulatory mechanisms surrounding T4P genes as well as provided transcriptional information for most of the genes in the C. perfringens strain 13 genome. We also utilized reporter gene assays to look at post-transcriptional regulation of T4P promoters. The wealth of RNA-seq data acted as a jumping-off point for many smaller projects involving transcriptional regulators that may influence T4P expression. We investigated a novel small RNA in close proximity to the major T4P operon, as well as two little-characterized transcriptional regulators that function in the same conditions as T4P genes. RNA-seq also provided data to develop a method for protein purification from C. perfringens without induction. / Master of Science
39

Type IV Pili-Dependent Secretion of Biofilm Matrix Material Proteins in Clostridium perfringens

Kivimaki, Sarah Elise 21 January 2022 (has links)
Clostridium perfringens is a Gram-positive bacterium that secretes a biofilm matrix material. The goal of these experiments was to identify pilin mutants that are needed for secretion of the biofilm matrix and develop a functional model for a type II secretion system (T2SS) in C. perfringens. Protein tagging, western blot, and slot blot experiments were done to quantify protein secretion. After performing experiments using a CPE0515-FLAG construct, it was concluded from immunoblot densitometry data that, except for the pilA1 deletion mutant, none of the 18 tested pilin mutants had a statistically significant difference from the wild type (WT) with regard to protein secretion. From slot blot densitometry assays, it was concluded that the pilA1 and CPE2280 mutants showed statistically significant lower values than the WT but the pilA2 and CPE1841 mutants had values that were higher than the wild type. Testing the construct containing only CPE0514 and CPE0515-FLAG showed that CPE0516 and CPE0517 are not needed for secretion of the protein CPE0515. HA-tagged CPE0516 qualitative immunoblots showed that, unlike CPE0515, oligomerization of CPE0516 is not occurring, and that this protein likely forms a heat stable dimer. Overall, the data did not allow us to construct a T2SS model, since there were not enough proteins revealed to be involved to create a complete Type II secretion system. / Master of Science / The methods by which C. perfringens can persist and survive in environmental conditions is something that would be useful to learn more about. One of the methods that many bacteria use to survive is by creating a biofilm matrix material, which provides protection for the bacteria from environmental stresses. In this study, the goal was to determine which specific proteins are needed for the secretion of the biofilm matrix material. Using molecular biology techniques, the proteins thought to be involved in biofilm formation quantified. The results showed that while two proteins ultimately appeared to be needed for secretion, there were not enough proteins involved to create a complete model for a functional secretion system in C. perfringens.
40

Cellular and molecular mechanisms of human endothelial cell plasma membrane remodeling by Neisseria meningitidis / Mécanismes cellulaires et moléculaires du remodelage de la membrane plasmique des cellules endothéliales humaines induit par Neisseria meningitidis

Charles-Orszag, Arthur 17 October 2017 (has links)
Neisseria meningitidis est une bactérie diderme qui colonise le nasopharynx humain de façon commensale. Occasionnellement, elle franchit la barrière nasopharyngée et accède à la circulation sanguine où elle peut provoquer un choc septique et/ou une méningite Le pouvoir pathogène de N. meningitidis est lié à sa capacité à interagir avec les cellules endothéliales humaines. Après avoir adhéré aux cellules grâce à des organelles filamenteux, les pili de type IV, les bactéries induisent une déformation de la membrane plasmique de la cellule hôte sous la forme de protrusions riches en actine ressemblant à des filopodes. Ces protrusions permettent aux bactéries de résister aux forces de cisaillements générées par le flux sanguin et de proliférer à la surface des cellules. Contrairement à de nombreuses autres bactéries pathogènes, cette déformation de la membrane plasmique ne nécessite pas de polymérisation d’actine. Cependant, les mécanismes cellulaires et moléculaires de cette déformation sont inconnus. Dans cette étude, nous montrons que lorsque des bactéries individuelles adhèrent à la cellule hôte, la membrane plasmique se déforme en adhérant le long des fibres de pili de type IV de façon similaire au mouillage d’un liquide sur un solide. Les pili de type IV agissent donc comme un échafaudage extracellulaire qui guide les protrusions de membrane plasmique indépendamment du cytosquelette d’actine. Nous montrons également que la capacité de la membrane plasmique à se déformer le long de structures adhésives nanométriques est une propriété intrinsèque des cellules endothéliales. Ces travaux décrivent le mécanisme d’une étape importante de la pathophysiologie de N. meningitidis et mettent en évidence des propriétés nouvelles de la membrane plasmique des cellules humaines qui pourraient être impliquées dans d’autres processus fondamentaux de biologie cellulaire. / Neisseria meningitidis is a diderm bacterium that is naturally found in the human nasopharynx as a commensal. Occasionally, it can cross the mucosa and reach the underlying blood vessels where it enters the circulation. Once in the bloodstream, it can cause severe septic shock and/or meningitis. The ability of N. meningitidis to cause disease is tightly linked to its ability to interact with human endothelial cells. In particular, upon bacterial adhesion via filamentous organelles called type IV pili, bacteria remodel the host cell plasma membrane in the form of actin-rich, filopodia-like protrusions. These protrusions allow bacteria to resist blood flow-generated shear stress and proliferate on top of the host cells. Unlike many other bacterial pathogens, plasma membrane remodeling induced by N. meningitidis does not require actin polymerization. Yet, the cellular and molecular mechanisms of this process are unknown. Here, we show that upon adhesion of individual bacteria, the host cell plasma membrane deforms by adhering along type IV pili fibers in a wetting-like fashion. Therefore, type IV pili act as an extracellular scaffold that guide plasma membrane protrusions in an F-actin-independent manner. We further show that the ability of the plasma membrane to deform along nanoscale adhesive structures is an intrinsic property of endothelial cells. Therefore, this study uncovers the mechanism of a key step of N. meningitidis pathophysiology and reveals novel properties of human cell plasma membrane that could be at play in other fundamental cellular processes.

Page generated in 0.6459 seconds