Spelling suggestions: "subject:"titman alternative."" "subject:"whitman alternative.""
1 |
Goodness-Of-Fit Test for Hazard RateVital, Ralph Antoine 14 December 2018 (has links)
In certain areas such as Pharmacokinetic(PK) and Pharmacodynamic(PD), the hazard rate function, denoted by ??, plays a central role in modeling the instantaneous risk of failure time data. In the context of assessing the appropriateness of a given parametric hazard rate model, Huh and Hutmacher [22] showed that their hazard-based visual predictive check is as good as a visual predictive check based on the survival function. Even though Huh and Hutmacher’s visual method is simple to implement and interpret, the final decision reached there depends on the personal experience of the user. In this thesis, our primary aim is to develop nonparametric goodness-ofit tests for hazard rate functions to help bring objectivity in hazard rate model selections or to augment subjective procedures like Huh and Hutmacher’s visual predictive check. Toward that aim two nonparametric goodnessofit (g-o) test statistics are proposed and they are referred to as chi-square g-o test and kernel-based nonparametric goodness-ofit test for hazard rate functions, respectively. On one hand, the asymptotic distribution of the chi-square goodness-ofit test for hazard rate functions is derived under the null hypothesis ??0 : ??(??) = ??0(??) ??? ? R + as well as under the fixed alternative hypothesis ??1 : ??(??) = ??1(??) ??? ? R +. The results as expected are asymptotically similar to those of the usual Pearson chi-square test. That is, under the null hypothesis the proposed test converges to a chi-square distribution and under the fixed alternative hypothesis it converges to a non-central chi-square distribution. On the other hand, we showed that the power properties of the kernel-based nonparametric goodness-ofit test for hazard rate functions are equivalent to those of the Bickel and Rosenblatt test, meaning the proposed kernel-based nonparametric goodness-ofit test can detect alternatives converging to the null at the rate of ???? , ?? < 1/2, where ?? is the sample size. Unlike the latter, the convergence rate of the kernel-base nonparametric g-o test is much greater; that is, one does not need a very large sample size for able to use the asymptotic distribution of the test in practice.
|
2 |
Estatística gradiente e refinamento de métodos assintóticos no modelo de regressão Birnbaum-Saunders / Gradient statistic and asymptotic inference in the Birnbaum-Saunders regression modelLemonte, Artur Jose 05 February 2010 (has links)
Rieck & Nedelman (1991) propuseram um modelo de regressão log-linear tendo como base a distribuição Birnbaum-Saunders (Birnbaum & Saunders, 1969a). O modelo proposto pelos autores vem sendo bastante explorado e tem se mostrado uma ótima alternativa a outros modelos propostos na literatura, como por exemplo, os modelos de regressão Weibull, gama e lognormal. No entanto, até o presente momento, não existe nenhum estudo tratando de refinamentos para as estatísticas da razão de verossimilhanças e escore nesta classe de modelos de regressão. Assim, um dos objetivos desta tese é obter um fator de correção de Bartlett para a estatística da razão de verossimilhanças e um fator de correção tipo-Bartlett para a estatística escore nesse modelo. Estes ajustes melhoram a aproximação da distribuição nula destas estatísticas pela distribuição qui-quadrado de referência. Adicionalmente, objetiva-se obter ajustes para a estatística da razão de verossimilhanças sinalizada. Tais ajustes melhoram a aproximação desta estatística pela distribuição normal padrão. Recentemente, uma nova estatística de teste foi proposta por Terrell (2002), a qual o autor denomina estatística gradiente. Esta estatística foi derivada a partir da estatística escore e da estatística de Wald modificada (Hayakawa & Puri, 1985). A combinação daquelas duas estatísticas resulta em uma estatística muito simples de ser calculada, não envolvendo, por exemplo, nenhum cálculo matricial como produto e inversa de matrizes. Esta estatística foi recentemente citada por Rao (2005): \"The suggestion by Terrell is attractive as it is simple to compute. It would be of interest to investigate the performance of the [gradient] statistic.\" Caminhando na direção da sugestão de Rao, outro objetivo da tese é obter uma expansão assintótica para a distribuição da estatística gradiente sob uma sequência de alternativas de Pitman convergindo para a hipótese nula a uma taxa de convergência de n^{-1/2} utilizando a metodologia desenvolvida por Peers (1971) e Hayakawa (1975). Em particular, mostramos que, até ordem n^{-1/2}, a estatística gradiente segue distribuição qui-quadrado central sob a hipótese nula e distribuição qui-quadrado não central sob a hipótese alternativa. Também temos como objetivo comparar o poder local deste teste com o poder local dos testes da razão de verossimilhanças, de Wald e escore. Finalmente, aplicaremos a expansão assintótica derivada na tese em algumas classes particulares de modelos. / The Birnbaum-Saunders regression model is commonly used in reliability studies.We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio and score tests tend to be liberal when the sample size is small. We derive Bartlett and Bartlett-type correction factors which reduce the size distortion of the tests. Additionally, we also consider modified signed log-likelihood ratio statistics in this class of models. Finally, the asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n^{-1/2}, n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property.
|
3 |
Estatística gradiente e refinamento de métodos assintóticos no modelo de regressão Birnbaum-Saunders / Gradient statistic and asymptotic inference in the Birnbaum-Saunders regression modelArtur Jose Lemonte 05 February 2010 (has links)
Rieck & Nedelman (1991) propuseram um modelo de regressão log-linear tendo como base a distribuição Birnbaum-Saunders (Birnbaum & Saunders, 1969a). O modelo proposto pelos autores vem sendo bastante explorado e tem se mostrado uma ótima alternativa a outros modelos propostos na literatura, como por exemplo, os modelos de regressão Weibull, gama e lognormal. No entanto, até o presente momento, não existe nenhum estudo tratando de refinamentos para as estatísticas da razão de verossimilhanças e escore nesta classe de modelos de regressão. Assim, um dos objetivos desta tese é obter um fator de correção de Bartlett para a estatística da razão de verossimilhanças e um fator de correção tipo-Bartlett para a estatística escore nesse modelo. Estes ajustes melhoram a aproximação da distribuição nula destas estatísticas pela distribuição qui-quadrado de referência. Adicionalmente, objetiva-se obter ajustes para a estatística da razão de verossimilhanças sinalizada. Tais ajustes melhoram a aproximação desta estatística pela distribuição normal padrão. Recentemente, uma nova estatística de teste foi proposta por Terrell (2002), a qual o autor denomina estatística gradiente. Esta estatística foi derivada a partir da estatística escore e da estatística de Wald modificada (Hayakawa & Puri, 1985). A combinação daquelas duas estatísticas resulta em uma estatística muito simples de ser calculada, não envolvendo, por exemplo, nenhum cálculo matricial como produto e inversa de matrizes. Esta estatística foi recentemente citada por Rao (2005): \"The suggestion by Terrell is attractive as it is simple to compute. It would be of interest to investigate the performance of the [gradient] statistic.\" Caminhando na direção da sugestão de Rao, outro objetivo da tese é obter uma expansão assintótica para a distribuição da estatística gradiente sob uma sequência de alternativas de Pitman convergindo para a hipótese nula a uma taxa de convergência de n^{-1/2} utilizando a metodologia desenvolvida por Peers (1971) e Hayakawa (1975). Em particular, mostramos que, até ordem n^{-1/2}, a estatística gradiente segue distribuição qui-quadrado central sob a hipótese nula e distribuição qui-quadrado não central sob a hipótese alternativa. Também temos como objetivo comparar o poder local deste teste com o poder local dos testes da razão de verossimilhanças, de Wald e escore. Finalmente, aplicaremos a expansão assintótica derivada na tese em algumas classes particulares de modelos. / The Birnbaum-Saunders regression model is commonly used in reliability studies.We address the issue of performing inference in this class of models when the number of observations is small. Our simulation results suggest that the likelihood ratio and score tests tend to be liberal when the sample size is small. We derive Bartlett and Bartlett-type correction factors which reduce the size distortion of the tests. Additionally, we also consider modified signed log-likelihood ratio statistics in this class of models. Finally, the asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n^{-1/2}, n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property.
|
Page generated in 0.1051 seconds