1 |
Authorship Attribution of Source CodeTennyson, Matthew Francis 01 January 2013 (has links)
Authorship attribution of source code is the task of deciding who wrote a program, given its source code. Applications include software forensics, plagiarism detection, and determining software ownership. A number of methods for the authorship attribution of source code have been presented in the past. A review of those existing methods is presented, while focusing on the two state-of-the-art methods: SCAP and Burrows.
The primary goal was to develop a new method for authorship attribution of source code that is even more effective than the current state-of-the-art methods. Toward that end, a comparative study of the methods was performed in order to determine their relative effectiveness and establish a baseline. A suitable set of test data was also established in a manner intended to support the vision of a universal data set suitable for standard use in authorship attribution experiments. A data set was chosen consisting of 7,231 open-source and textbook programs written in C++ and Java by thirty unique authors.
The baseline study showed both the Burrows and SCAP methods were indeed state-of-the-art. The Burrows method correctly attributed 89% of all documents, while the SCAP method correctly attributed 95%. The Burrows method inherently anonymizes the data by stripping all comments and string literals, while the SCAP method does not. So the methods were also compared using anonymized data. The SCAP method correctly attributed 91% of the anonymized documents, compared to 89% by Burrows.
The Burrows method was improved in two ways: the set of features used to represent programs was updated and the similarity metric was updated. As a result, the improved method successfully attributed nearly 94% of all documents, compared to 89% attributed in the baseline.
The SCAP method was also improved in two ways: the technique used to anonymize documents was changed and the amount of information retained in the source code author profiles was determined differently. As a result, the improved method successfully attributed 97% of anonymized documents and 98% of non-anonymized documents, compared to 91% and 95% that were attributed in the baseline, respectively.
The two improved methods were used to create an ensemble method based on the Bayes optimal classifier. The ensemble method successfully attributed nearly 99% of all documents in the data set.
|
2 |
Using Style Markers for Detecting Plagiarism in Natural Language DocumentsKimler, Marco January 2003 (has links)
<p>Most of the existing plagiarism detection systems compare a text to a database of other texts. These external approaches, however, are vulnerable because texts not contained in the database cannot be detected as source texts. This paper examines an internal plagiarism detection method that uses style markers from authorship attribution studies in order to find stylistic changes in a text. These changes might pinpoint plagiarized passages. Additionally, a new style marker called specific words is introduced. A pre-study tests if the style markers can fingerprint an author s style and if they are constant with sample size. It is shown that vocabulary richness measures do not fulfil these prerequisites. The other style markers - simple ratio measures, readability scores, frequency lists, and entropy measures - have these characteristics and are, together with the new specific words measure, used in a main study with an unsupervised approach for detecting stylistic changes in plagiarized texts at sentence and paragraph levels. It is shown that at these small levels the style markers generally cannot detect plagiarized sections because of intra-authorial stylistic variations (i.e. noise), and that at bigger levels the results are strongly a ected by the sliding window approach. The specific words measure, however, can pinpoint single sentences written by another author.</p>
|
3 |
Programinių modulių kokybės vertinimo sistema / Software Quality Assessment SystemGrigas, Deividas 20 September 2004 (has links)
Modern educational institutions use static methods e.g. tests in computer-based knowledge assessment systems. Tests have pattern questions with limited number of answers. Use of such methods does not guarantee objective knowledge assessment – numbers of the right answers could be guessed or memorized in advance. Practical skills can be tested by assigning programming tasks. In order to complete practical tasks students need good knowledge in the fields examined. This leads to better assessment of student knowledge in theory and practice. Teachers get better feedback. However practical tasks need considerable amount of time to be examined in detail which most teachers do not have. When assignments are tested superficially students tend to plagiarize and so the problem gets even deeper. A survey by Donald McCabe of approximately 6000 students revealed that 74% of engineering students reported engaging in some form of academic dishonesty. The goal of this work was to build a computer-based system to assess software quality and detect plagiarism. The system was designed and implemented. Experimental tests have shown good results. The system is intended to be used in future courses and gradually improved by other students.
|
4 |
Using Style Markers for Detecting Plagiarism in Natural Language DocumentsKimler, Marco January 2003 (has links)
Most of the existing plagiarism detection systems compare a text to a database of other texts. These external approaches, however, are vulnerable because texts not contained in the database cannot be detected as source texts. This paper examines an internal plagiarism detection method that uses style markers from authorship attribution studies in order to find stylistic changes in a text. These changes might pinpoint plagiarized passages. Additionally, a new style marker called specific words is introduced. A pre-study tests if the style markers can fingerprint an author s style and if they are constant with sample size. It is shown that vocabulary richness measures do not fulfil these prerequisites. The other style markers - simple ratio measures, readability scores, frequency lists, and entropy measures - have these characteristics and are, together with the new specific words measure, used in a main study with an unsupervised approach for detecting stylistic changes in plagiarized texts at sentence and paragraph levels. It is shown that at these small levels the style markers generally cannot detect plagiarized sections because of intra-authorial stylistic variations (i.e. noise), and that at bigger levels the results are strongly a ected by the sliding window approach. The specific words measure, however, can pinpoint single sentences written by another author.
|
5 |
Detecting Sockpuppets in Social Media with Plagiarism Detection Algorithms / Identifikation av Strumpdockor inom Social Media med PlagiatkontrollalgoritmerAlbrektsson, Fredrik January 2017 (has links)
As new forms of propaganda and information control spread across the internet, the need for novel ways of identifying them increases as well. One increasingly popular method of spreading false messages on microblogs like Twitter is to disseminate them from seemingly ordinary, but centrally controlled and coordinated user accounts – sockpuppets. In this paper we examine a number of potential methods for identifying these by way of applying plagiarism detection algorithms for text, and evaluate their performance against this type of threat. We identify one type of algorithm in particular – that using vector space modeling of text – as particularly useful in this regard. / Allteftersom nya former av propaganda och informationskontroll sprider sig över internet krävs också nya sätt att identifiera dessa. En allt mer populär metod för att sprida falsk information på mikrobloggar som Twitter är att göra det från till synes ordinära, men centralt kontrollerade och koordinerade användarkonton – på engelska kända som “sockpuppets”. I denna undersökning testar vi ett antal potentiella metoder för att identifiera dessa genom att applicera plagiatkontrollalgoritmer ämnade för text, och utvärderar deras prestanda mot denna sortens hot. Vi identifierar framför allt en typ av algoritm – den som nyttjar vektorrymdsmodellering av text – som speciellt användbar i detta avseende.
|
6 |
Emprego de tÃcnicas de prÃ-processamento textual e algoritmos de comparaÃÃo como suporte à correÃÃo de questÃes dissertativas: experimentos, anÃlises e contribuiÃÃes / Employing texts preprocessing techniques and string-matching algorithms to support correction of essay questions: experiments, analyzes and contributions.Ricardo Lima Feitosa Ãvila 23 August 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Esta dissertaÃÃo apresenta um estudo de tÃcnicas que podem ser empregadas como apoio para a correÃÃo de questÃes dissertativas com base na adaptaÃÃo de algoritmos de comparaÃÃo textual combinados a tÃcnicas de prÃ-processamento de textos. O principal desafio na concepÃÃo de uma ferramenta para este tipo de aplicaÃÃo à a ambiguidade da linguagem natural. Para analisar situaÃÃes de correÃÃo de questÃes subjetivas, foram efetuados testes com esses algoritmos, tendo-se desenvolvido uma ferramenta para tal propÃsito. Confrontando respostas de alunos ao padrÃo de resposta de questÃes propostas em provas subjetivas, foram analisados o desempenho individual dos algoritmos e de um conjunto de tÃcnicas de prÃ-processamento que sÃo encontrados na literatura, de maneira isolada e combinada. Buscando contornar situaÃÃes especÃficas de falso negativo e falso positivo, foram propostas algumas tÃcnicas auxiliares como contribuiÃÃo deste trabalho. ApÃs a anÃlise dos experimentos realizados, os resultados de Ãndice de similaridade entre respostas indicam o uso da soluÃÃo como suporte a correÃÃo de questÃes discursivas, podendo, ainda, ser aplicado na detecÃÃo de plÃgio e ser integrado a um ambiente virtual de ensino e aprendizagem. / This master thesis presents a study of techniques used as support for a correction of essay questions based in an adaptation of string-matching algorithms combined with text preprocessing techniques. The main challenge to design a tool like this is an ambiguity of natural language. To analyze a correction of subjective questions, tests were performed with these algorithms, and a tool have been developed for this purpose. Comparing student responses with response pattern of questions proposed in subjective tests, we analyzed the performance of individual algorithms and a set of pre-processing techniques that are found in the literature, in isolation and combined. Seeking to neutralize specific situations of false negative and false positive, some techniques have been proposed as auxiliary contribution of this work. After analyzing the experiments, the results of similarity index between responses indicate the use of the solution to support the correction of essay questions, and may also be applied in the detection of plagiarism and be integrated to a learning management system.
|
7 |
Cross-language plagiarism detection / Detecção de plágio multilínguePereira, Rafael Corezola January 2010 (has links)
Plágio é um dos delitos mais graves no meio acadêmico. É definido como “o uso do trabalho de uma pessoa sem a devida referência ao trabalho original”. Em contrapartida a esse problema, existem diversos métodos que tentam detectar automaticamente plágio entre documentos. Nesse contexto, esse trabalho propõe um novo método para Análise de Plágio Multilíngue. O objetivo do método é detectar casos de plágio em documentos suspeitos baseado em uma coleção de documentos ditos originais. Para realizar essa tarefa, é proposto um método de detecção de plágio composto por cinco fases principais: normalização do idioma, recuperação dos documentos candidatos, treinamento do classificador, análise de plágio, pós-processamento. Uma vez que o método é projetado para detectar plágio entre documentos escritos em idiomas diferentes, nós usamos um language guesser para identificar o idioma de cada documento e um tradutor automático para traduzir todos os documentos para um idioma comum (para que eles possam ser analisados de uma mesma forma). Após a normalização, nós aplicamos um algoritmo de classificação com o objetivo de construir um modelo que consiga diferenciar entre um trecho plagiado e um trecho não plagiado. Após a fase de treinamento, os documentos suspeitos podem ser analisados. Um sistema de recuperação é usado para buscar, baseado em trechos extraídos de cada documento suspeito, os trechos dos documentos originais que são mais propensos de terem sido utilizados como fonte de plágio. Somente após os trechos candidatos terem sido retornados, a análise de plágio é realizada. Por fim, uma técnica de pós-processamento é aplicada nos resultados da detecção a fim de juntar os trechos plagiados que estão próximos um dos outros. Nós avaliamos o métodos utilizando três coleções de testes disponíveis. Duas delas foram criadas para as competições PAN (PAN’09 e PAN’10), que são competições internacionais de detecção de plágio. Como apenas um pequeno percentual dos casos de plágio dessas coleções era multilíngue, nós criamos uma coleção com casos de plágio multilíngue artificiais. Essa coleção foi chamada de ECLaPA (Europarl Cross-Language Plagiarism Analysis). Os resultados alcançados ao analisar as três coleções de testes mostraram que o método proposto é uma alternativa viável para a tarefa de detecção de plágio multilíngue. / Plagiarism is one of the most serious forms of academic misconduct. It is defined as “the use of another person's written work without acknowledging the source”. As a countermeasure to this problem, there are several methods that attempt to automatically detect plagiarism between documents. In this context, this work proposes a new method for Cross-Language Plagiarism Analysis. The method aims at detecting external plagiarism cases, i.e., it tries to detect the plagiarized passages in the suspicious documents (the documents to be investigated) and their corresponding text fragments in the source documents (the original documents). To accomplish this task, we propose a plagiarism detection method composed by five main phases: language normalization, retrieval of candidate documents, classifier training, plagiarism analysis, and postprocessing. Since the method is designed to detect cross-language plagiarism, we used a language guesser to identify the language of the documents and an automatic translation tool to translate all the documents in the collection into a common language (so they can be analyzed in a uniform way). After language normalization, we applied a classification algorithm in order to build a model that is able to differentiate a plagiarized text passage from a non-plagiarized one. Once the classifier is trained, the suspicious documents can be analyzed. An information retrieval system is used to retrieve, based on passages extracted from each suspicious document, the passages from the original documents that are more likely to be the source of plagiarism. Only after the candidate passages are retrieved, the plagiarism analysis is performed. Finally, a postprocessing technique is applied in the reported results in order to join the contiguous plagiarized passages. We evaluated our method using three freely available test collections. Two of them were created for the PAN competitions (PAN’09 and PAN’10), which are international competitions on plagiarism detection. Since only a small percentage of these two collections contained cross-language plagiarism cases, we also created an artificial test collection especially designed to contain this kind of offense. We named the test collection ECLaPA (Europarl Cross-Language Plagiarism Analysis). The results achieved while analyzing these collections showed that the proposed method is a viable approach to the task of cross-language plagiarism analysis.
|
8 |
Combinando métricas baseadas em conteúdo e em referências para a detecção de plágio em artigos científicos / Combining content- and citation-based metrics for plagiarism detection in scientific papersPertile, Solange de Lurdes January 2015 (has links)
A grande quantidade de artigos científicos disponíveis on-line faz com que seja mais fácil para estudantes e pesquisadores reutilizarem texto de outros autores, e torna mais difícil a verificação da originalidade de um determinado texto. Reutilizar texto sem creditar a fonte é considerado plágio. Uma série de estudos relatam a alta prevalência de plágio no meio acadêmico e científico. Como consequência, inúmeras instituições e pesquisadores têm se dedicado à elaboração de sistemas para automatizar o processo de verificação de plágio. A maioria dos trabalhos existentes baseia-se na análise da similaridade do conteúdo textual dos documentos para avaliar a existência de plágio. Mais recentemente, foram propostas métricas de similaridade que desconsideram o texto e analisam apenas as citações e/ou referências bibliográficas compartilhadas entre documentos. Entretanto, casos em que o autor não referencia a fonte original pode passar despercebido pelas métricas baseadas apenas na análise de referências/citações. Neste contexto, a solução proposta é baseada na hipótese de que a combinação de métricas de similaridade de conteúdo e de citações/referências pode melhorar a qualidade da detecção de plágio. Duas formas de combinação são propostas: (i) os escores produzidos pelas métricas de similaridade são utilizados para ranqueamento dos pares de documentos e (ii) os escores das métricas são utilizados para construir vetores de características que serão usados por algoritmos de Aprendizagem de Máquina para classificar os documentos. Os experimentos foram realizados com conjuntos de dados reais de artigos científicos. A avaliação experimental mostra que a hipótese foi confirmada quando a combinação das métricas de similaridade usando Aprendizagem de Máquina é comparada com a combinação simples. Ainda, ambas as combinações apresentaram ganhos quando comparadas com as métricas aplicadas de forma individual. / The large amount of scientific documents available online makes it easier for students and researchers reuse text from other authors, and makes it difficult to verify the originality of a given text. Reusing text without crediting the source is considered plagiarism. A number of studies have reported on the high prevalence of plagiarism in academia. As a result, many institutions and researchers have developed systems that automate the plagiarism detection process. Most of the existing work is based on the analysis of the similarity of the textual content of documents to assess the existence of plagiarism. More recently, similarity metrics that ignore the text and just analyze the citations and/or references shared between documents have been proposed. However, cases in which the author does not reference the original source may go unnoticed by metrics based only on the references/citations analysis. In this context, the proposed solution is based on the hypothesis that the combination of content similarity metrics and references/citations can improve the quality of plagiarism detection. Two forms of combination are proposed: (i) scores produced by the similarity metrics are used to ranking of pairs of documents and (ii) scores of metrics are used to construct feature vectors that are used by algorithms machine learning to classify documents. The experiments were performed with real data sets of papers. The experimental evaluation shows that the hypothesis was confirmed when the combination of the similarity metrics using machine learning is compared with the simple combining. Also, both compounds showed gains when compared with the metrics applied individually.
|
9 |
Cross-language plagiarism detection / Detecção de plágio multilínguePereira, Rafael Corezola January 2010 (has links)
Plágio é um dos delitos mais graves no meio acadêmico. É definido como “o uso do trabalho de uma pessoa sem a devida referência ao trabalho original”. Em contrapartida a esse problema, existem diversos métodos que tentam detectar automaticamente plágio entre documentos. Nesse contexto, esse trabalho propõe um novo método para Análise de Plágio Multilíngue. O objetivo do método é detectar casos de plágio em documentos suspeitos baseado em uma coleção de documentos ditos originais. Para realizar essa tarefa, é proposto um método de detecção de plágio composto por cinco fases principais: normalização do idioma, recuperação dos documentos candidatos, treinamento do classificador, análise de plágio, pós-processamento. Uma vez que o método é projetado para detectar plágio entre documentos escritos em idiomas diferentes, nós usamos um language guesser para identificar o idioma de cada documento e um tradutor automático para traduzir todos os documentos para um idioma comum (para que eles possam ser analisados de uma mesma forma). Após a normalização, nós aplicamos um algoritmo de classificação com o objetivo de construir um modelo que consiga diferenciar entre um trecho plagiado e um trecho não plagiado. Após a fase de treinamento, os documentos suspeitos podem ser analisados. Um sistema de recuperação é usado para buscar, baseado em trechos extraídos de cada documento suspeito, os trechos dos documentos originais que são mais propensos de terem sido utilizados como fonte de plágio. Somente após os trechos candidatos terem sido retornados, a análise de plágio é realizada. Por fim, uma técnica de pós-processamento é aplicada nos resultados da detecção a fim de juntar os trechos plagiados que estão próximos um dos outros. Nós avaliamos o métodos utilizando três coleções de testes disponíveis. Duas delas foram criadas para as competições PAN (PAN’09 e PAN’10), que são competições internacionais de detecção de plágio. Como apenas um pequeno percentual dos casos de plágio dessas coleções era multilíngue, nós criamos uma coleção com casos de plágio multilíngue artificiais. Essa coleção foi chamada de ECLaPA (Europarl Cross-Language Plagiarism Analysis). Os resultados alcançados ao analisar as três coleções de testes mostraram que o método proposto é uma alternativa viável para a tarefa de detecção de plágio multilíngue. / Plagiarism is one of the most serious forms of academic misconduct. It is defined as “the use of another person's written work without acknowledging the source”. As a countermeasure to this problem, there are several methods that attempt to automatically detect plagiarism between documents. In this context, this work proposes a new method for Cross-Language Plagiarism Analysis. The method aims at detecting external plagiarism cases, i.e., it tries to detect the plagiarized passages in the suspicious documents (the documents to be investigated) and their corresponding text fragments in the source documents (the original documents). To accomplish this task, we propose a plagiarism detection method composed by five main phases: language normalization, retrieval of candidate documents, classifier training, plagiarism analysis, and postprocessing. Since the method is designed to detect cross-language plagiarism, we used a language guesser to identify the language of the documents and an automatic translation tool to translate all the documents in the collection into a common language (so they can be analyzed in a uniform way). After language normalization, we applied a classification algorithm in order to build a model that is able to differentiate a plagiarized text passage from a non-plagiarized one. Once the classifier is trained, the suspicious documents can be analyzed. An information retrieval system is used to retrieve, based on passages extracted from each suspicious document, the passages from the original documents that are more likely to be the source of plagiarism. Only after the candidate passages are retrieved, the plagiarism analysis is performed. Finally, a postprocessing technique is applied in the reported results in order to join the contiguous plagiarized passages. We evaluated our method using three freely available test collections. Two of them were created for the PAN competitions (PAN’09 and PAN’10), which are international competitions on plagiarism detection. Since only a small percentage of these two collections contained cross-language plagiarism cases, we also created an artificial test collection especially designed to contain this kind of offense. We named the test collection ECLaPA (Europarl Cross-Language Plagiarism Analysis). The results achieved while analyzing these collections showed that the proposed method is a viable approach to the task of cross-language plagiarism analysis.
|
10 |
Combinando métricas baseadas em conteúdo e em referências para a detecção de plágio em artigos científicos / Combining content- and citation-based metrics for plagiarism detection in scientific papersPertile, Solange de Lurdes January 2015 (has links)
A grande quantidade de artigos científicos disponíveis on-line faz com que seja mais fácil para estudantes e pesquisadores reutilizarem texto de outros autores, e torna mais difícil a verificação da originalidade de um determinado texto. Reutilizar texto sem creditar a fonte é considerado plágio. Uma série de estudos relatam a alta prevalência de plágio no meio acadêmico e científico. Como consequência, inúmeras instituições e pesquisadores têm se dedicado à elaboração de sistemas para automatizar o processo de verificação de plágio. A maioria dos trabalhos existentes baseia-se na análise da similaridade do conteúdo textual dos documentos para avaliar a existência de plágio. Mais recentemente, foram propostas métricas de similaridade que desconsideram o texto e analisam apenas as citações e/ou referências bibliográficas compartilhadas entre documentos. Entretanto, casos em que o autor não referencia a fonte original pode passar despercebido pelas métricas baseadas apenas na análise de referências/citações. Neste contexto, a solução proposta é baseada na hipótese de que a combinação de métricas de similaridade de conteúdo e de citações/referências pode melhorar a qualidade da detecção de plágio. Duas formas de combinação são propostas: (i) os escores produzidos pelas métricas de similaridade são utilizados para ranqueamento dos pares de documentos e (ii) os escores das métricas são utilizados para construir vetores de características que serão usados por algoritmos de Aprendizagem de Máquina para classificar os documentos. Os experimentos foram realizados com conjuntos de dados reais de artigos científicos. A avaliação experimental mostra que a hipótese foi confirmada quando a combinação das métricas de similaridade usando Aprendizagem de Máquina é comparada com a combinação simples. Ainda, ambas as combinações apresentaram ganhos quando comparadas com as métricas aplicadas de forma individual. / The large amount of scientific documents available online makes it easier for students and researchers reuse text from other authors, and makes it difficult to verify the originality of a given text. Reusing text without crediting the source is considered plagiarism. A number of studies have reported on the high prevalence of plagiarism in academia. As a result, many institutions and researchers have developed systems that automate the plagiarism detection process. Most of the existing work is based on the analysis of the similarity of the textual content of documents to assess the existence of plagiarism. More recently, similarity metrics that ignore the text and just analyze the citations and/or references shared between documents have been proposed. However, cases in which the author does not reference the original source may go unnoticed by metrics based only on the references/citations analysis. In this context, the proposed solution is based on the hypothesis that the combination of content similarity metrics and references/citations can improve the quality of plagiarism detection. Two forms of combination are proposed: (i) scores produced by the similarity metrics are used to ranking of pairs of documents and (ii) scores of metrics are used to construct feature vectors that are used by algorithms machine learning to classify documents. The experiments were performed with real data sets of papers. The experimental evaluation shows that the hypothesis was confirmed when the combination of the similarity metrics using machine learning is compared with the simple combining. Also, both compounds showed gains when compared with the metrics applied individually.
|
Page generated in 0.1203 seconds