• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 341
  • 124
  • 71
  • 52
  • 48
  • 29
  • 20
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 843
  • 109
  • 84
  • 64
  • 56
  • 54
  • 49
  • 48
  • 46
  • 44
  • 44
  • 43
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

A Comprehensive Investigation of New Planar Wideband Antennas

Suh, Seong-Youp 28 August 2002 (has links)
Broadband wireless communications require wideband antennas to support large number of users and higher data rates. Desirable features of a wideband antenna are low-profile, dual-polarization and wide bandwidth in a compact size. Many existing wideband antennas are large in size and some have only circular polarization. On the other hand low-profile, dual-polarized antennas frequently have limited bandwidth. This dissertation reports on results from original research into several new wideband antennas. All are compact and planar, and many are low-profile and dual-polarized. Since 1994, Virginia Tech Antenna Group (VTAG) has performed research on the wideband, low-profile and dual-polarized antennas of compact size. This research resulted in the following antenna innovations: the Fourpoint, Fourtear, PICA (Planar Inverted Cone Antenna), diPICA (dipole PICA) and LPdiPICA (Low-Profile diPICA) antennas. They are all planar in geometry so one can easily construct them in a compact size. The antennas were characterized and investigated with extensive simulations and measurements. The computed and measured data demonstrates that some of the antennas appear to have the characteristics of the self-complementary antenna and most of the proposed antennas provide more than a 10:1 impedance bandwidth for a VSWR < 2. Patterns, however, are degraded at the high end of the frequency. Several tapered ground planes were proposed to improve the radiation pattern characteristics without degrading the impedance performance. A simulation result proposed a possibility of another antenna inventions providing 10:1 pattern bandwidth with the 10:1 impedance bandwidth. Research into wideband antennas demonstrated that the newly invented antennas are closely related each other and are evolved from a primitive element, PICA. Not only the comprehensive investigation but also a practical antenna design has been done for commercial base-station array antennas and to phased array antennas for government applications. This dissertation presents results of comprehensive investigation of new planar wideband antennas and its usefulness to the broadband wireless communications. / Ph. D.
172

Design Optimizations of LLC Resonant Converters with Planar Matrix Transformers

Prakash, Pranav Raj 12 1900 (has links)
LLC resonant converters have been a popular choice for DC-DC converters due to their high efficiency, high power density, and hold-up capability in power supplies for communication systems, datacenters, consumer electronics, and automobiles. With the rapid development of wide-bandgap devices and novel magnetic materials, the push for higher switching frequencies to achieve higher power densities at lower costs is gaining traction. To demonstrate high efficiency and high power density, the Center for Power Electronics Systems (CPES) at Virginia Tech designed an 800W, 1MHz 400V/12V LLC converter for future datacenters, which could achieve a peak efficiency of 97.6% and a power density of 900 W/in3. However, with the ever-increasing demand for online services, the performance of power delivery must also be simultaneously improved to keep pace with the demand. The focus of this thesis is improving the performance of CPES’ previous 400V/12V LLC converter by investigating different aspects of its design and operation. Ultimately, design guidelines are proposed, and improvements are demonstrated to effectively achieve higher efficiency and higher power density than the previous CPES converter. Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. The output-side termination design of the planar transformer is investigated and modeled, and design guidelines for filter capacitor selection are provided for optimal efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions. / M.S. / The electricity demand by datacenters has been growing exponentially over the past few decades, especially due to the boom of artificial intelligence in addition to other internet services. This has resulted in a requirement to continually improve the efficiencies of the power delivery from the grid, through the datacenter power architecture, and finally to the loads on the server racks. The overall datacenter power architecture has been improved over time to improve the total efficiency. However, the performance of each stage along the power architecture must be improved to keep in pace with the energy demand. The focus of this thesis is to improve the performance of the 400V/12V DC-DC stage for future datacenters. Previously, the Center for Power Electronics Systems (CPES) at Virginia Tech developed a 1MHz 800W 400V/12V LLC converter with 97.6% peak efficiency and 900W/in3 power density. However, the performance of the converter must be further improved to stay ahead of the competition and keep in pace with the increasing energy demand. Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. Firstly, the high-frequency termination design, or how different components are interconnected and arranged, is studied, and a capacitance selection guideline is proposed to maximize the efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions.
173

Evaluation of the Effects of Microporous Layer Characteristics and Assembly Parameters on the Performance and Durability of a Planar PEM Fuel Cell

Burand, Patrick Hiroshi 20 January 2010 (has links)
In recent years a significant portion of proton exchange membrane fuel cell (PEMFC) work has been focused on understanding and optimizing the functions of the microporous layer (MPL). Researchers have found that including this layer, composed of carbon black and TeflonTM (PTFE), between the gas diffusion layer (GDL) and catalyst layer (CL) of PEMFCs improves performance. The major benefit of the MPL in conventional fuel cells is that it improves water management and reduces contact resistances between cell layers. Although the functions of the MPL in conventional PEMFCs are well understood, the essential functions and optimal formulation of the layer in planar PEMFCs which operate without stack compression, are for the most part unknown. This work determines the essential functions and optimal composition, loading and sintering pressure of the MPL in a planar fuel cell design called a Ribbon Fuel Cell. Adhesion as well as performance data were gathered to determine the essential functions and formulation of the MPL which leads to high performance and durability in Ribbon Fuel Cells. Statistical models were created based on performance data of cells constructed with various MPLs; and a MPL composed of 45 wt% PTFE, loaded at 3.5 mg/cm° and sintered between 20 and 40 psi was found to exhibit optimal performance and durability. The reason why such a high PTFE content yields optimal results is because it strengthens the MPL, allowing it to successfully join various cell layers together, a function that is essential in Ribbon Cells which operate without external stack compression. / Master of Science
174

A Frequency Tunable PIFA Design for Handset Applications

Elfergani, Issa T., Abd-Alhameed, Raed, Bin-Melha, Mohammed S., See, Chan H., Zhou, Dawei, Child, Mark B., Excell, Peter S. January 2010 (has links)
Yes / A frequency tunable planar inverted F antenna (PIFA) is presented for use in the following bands: DCS, PCS, and UMTS. Initially, the tuning was achieved by placing a lumped capacitor, with values in the range of 1.5 to 4 pF, along the slot of the radiator. The final tuning circuit uses a varactor diode, and discrete lumped elements are fully integrated with the antenna. The antenna prototype is tunable over from 1850 MHz to 2200 MHz, with an associated volume of 21×13.5×5 mm3, making it suitable for potential integration in a commercial handset or mobile user terminal.
175

Planar Magnetic Integration and Parasitic Effects for a 3 KW Bi-directional DC/DC Converter

Ferrell, Jeremy 03 September 2002 (has links)
Over the recent years many people have been trying to reduce the size and weight of magnetic components and thus the overall system [ 19 ]. One attempt at this is to increase the switching frequency of the system. However, this attempt has its limitations due to increased device switching losses. Device limitations usually confine this frequency to lower value than is desired. An effective approach, reducing the size and weight is to use the planar magnetics for possible integration with the power circuit and thus eliminating the associated interconnections. Planar magnetics uses the printed circuit board as the windings. This will allow the magnetic component to be implemented into the circuit. The integration of the magnetic components and power circuit will decrease the number of connections, reduce the height, and ensure the parasitic repeatability. Having external connections can cause problems in the system. In this case the system must carry a large amount of current. The connections can cause heating from resistance and inductance of the connection. The planar approach also will decrease the height of the system. This is because the planar magnetic cores have a higher surface area with a decreased height. This can reduce the height of the system by 25 %- 50 % [ 19 ]. The parasitic repeatability is also a very important factor. In many cases the typology relies on the parasitic elements for energy storage. Since, the parasitic elements are mainly a result from the geometry of the system; and the planar system has the windings made from the printed circuit board, the parasitic elements will be very consistent through the manufacturing process. For topologies that rely on the parasitic elements for soft switching, the planar design can incorporate parasitic elements with the leakage components for the soft-switching requirement. This thesis redefines the conventional term of leakage inductance as the sum of a set of lumped parasitic inductances and the transformer leakage inductance for the integrated planar magnetics and inverter power circuitry. For the conventional non-integrated transformer, either planar or non-planar, the leakage inductance is defined between two terminals of the transformer. However, for the integrated planar magnetics, the new lumped parasitic and leakage inductance should include the inverter switch and dc bus interconnections. The transformer was first designed using a closed-form solution for a known geometry with different copper thickness. The calculated leakage inductance was then verified with finite element analysis and the impedance analyzer measurement. It was found that the theoretical calculation and the finite element analysis results agreed very well, but the measurement was more than one order of magnitude higher. This prompted the study of interconnect parasitics. With geometrical structure and proper termination and lumping, a set of parasitic inductances were defined, and the results were verified with measurements of both impedance analyzer and phase-shifted modulated full-bridge inverter testing. In addition to parasitic inductance analysis, the flux distribution and associated thermal performance of the planar structure were also studied with finite element analysis. The resulting plots of flux distribution and temperature profile indicate the key locations of mechanical mounting and heat sinking. Overall the thesis covers essential design considerations in electrical, mechanical, and thermal aspects for the planar magnetics integration. / Master of Science
176

Linear and Planar Jordan Content

Hodge, James E. 08 1900 (has links)
This paper considers the concept of inner and outer content, which was introduced by Camille Jordan and Giuseppe Peano near the end of the nineteenth century.
177

Efeitos de tamanho finito e de interfaces em super-redes InP/In IND. 0.53 Ga IND. 0.47As. / Effects of finite size and super-network interfaces in InP / \'In IND. 0:53 \'\' Ga IND. 12:47 \'Overpriced

Hanamoto, Luciana Kazumi 14 December 2001 (has links)
Neste trabalho, estudamos as propriedades eletrônicas e estruturais de super-redes InP/In IND. 0.53 Ga IND. 0.47As dopadas fortemente com Si (densidade equivalente no bulk superior a 4.4 x 10 POT. 18cm POT. -3). O espectro de Fourier das oscilações de Shubnikov-de Haas apresenta um dubleto característico de elétrons que populam uma minibanda de energia, assim como uma freqüência de oscilação associada a elétrons confinados em uma camada superficial bidimensional (elétrons de Tamm). Verificamos que, para descrever o espectro de energia dos elétrons da minibanda, o modelo de Kronig-Penney é em geral suficiente porém, para descrever adequadamente os estados de Tamm é necessário recorrer a um cálculo auto-consistente completo. A boa resolução do dubleto associado aos elétrons que populam a minibanda de energia permitiu extrair as mobilidades quânticas dos elétrons associados aos hodógrafos extremais (\"cintura\" e \"pescoço\") da mini-superfície de Fermi. O tratamento de dados foi efetuado com a utilização de procedimentos especialmente desenvolvidos, que apresentam a vantagem de não necessitar da utilização de filtros de Fourier sofisticados. A detecção do estado de Tamm nas oscilações de Shubnikov-de Haas é inétida por se tratar de estados de Tamm degenerados. Por ser a mobilidade quântica dos elétrons de Tamm quase duas vezes maior do que a mesma mobilidade para os elétrons da minibanda, em campos magnéticos fracos as oscilações de Shubnikov-de Haas são dominadas pelos elétrons de Tamm, apesar da quantidade de elétrons de Tamm corresponder a apenas em torno de 10% do total de portadores livres em nossas amostras. As super-redes InP/In IND. 0.53 Ga IND. 0.47As:Si apresentam, também, grande redução de portadores livres com a diminuição do período das super-redes. A perda de portadores livres é de 60% quando o período é diminuído em 20%. Esta redução está correlacionada com a quantidade de átomos de ) dopantes que recai na camada interfacial de InAs IND. X P IND. 1-X que se forma quando InP é depositado sobre In IND. 0.53 Ga IND. 0.47As. Um estudo de um conjunto de 8 amostras nos permitiu estimar que a espessura da camada interfacial é de aproximadamente 20 ANGSTRONS. Os dados experimentais indicam que os átomos de Si que recaem nas camadas interfaciais, ao invés de formarem doadores rasos, formam centros profundos com energia de ativação superior a 50 meV. / In this work the electronic and structural properties of InP/In IND. 0.53 Ga IND. 0.47As superlattices heavily doped with Si (bulk equivalent density greater than 4.4 x 10 POT. 18cm POT. -3) were studied. The Fourier spectrum of the Shubnikov-de Haas oscillations presents a double peak characteristic of electrons which populate the first miniband of the energy spectrum, and an additional peak associated to electrons confined in a two-dimensional surface layer (Tamm electrons). We verified that the Kronig-Penney model is, in general, a good approximation to describe the energy spectrum of electrons in the miniband. However, to describe adequately the Tamm states, it is necessary to resort to a full self-consistent calculation of the energy levels in the effective mass approximation. The well-resolved doublet associated to the electrons in the miniband allowed us to extract the quantum mobilities associated to both extremal orbits of the Fermi mini-surface (belly and neck). The data analysis was done by using specially developed procedures, which have the advantage of not requiring the use of sophisticated Fourier filters. The detection of Tamm states throught Shubnikov-de Haas oscillations was done for the first time in superlattices in which the Tammm states are degenerate. On account of the fact that the quantum mobility of the Tamm electrons is about a factor of two greater than the quantum mobility of the miniband electrons, the Shubnikov-de Haas oscillations are dominated by electrons from the Tamm states, especially at weak magnetic fields, despite of the fact that the amount of Tamm electrons is only about 10% of the total amount of free carriers in our sample. The InP/In IND. 0.53 Ga IND. 0.47As:Si superlattices also display a strong reduction in the amount of free carriers when the period of the superlattice decreases. This reduction reaches 60% when the superlatticess period is decreased by only 20%. This reduction correlates with the amount of doping atoms that fall into the interfacial layer InAs IND. X P IND. 1-X which is formed when InP is grown on In IND. 0.53 Ga IND. 0.47As. A study of a set of 8 samples allowed us to estimate that the interfacial layer is approximately 20 ANGSTRONS thick. The experimental data indicate that the Si atoms which fall into the interfacial form deep levels with an activation energy larger than 50 meV.
178

Estudo de um atuador planar de indução para a inspeção de superfícies metálicas

Treviso, Felipe January 2016 (has links)
Um atuador planar de indução é um dispositivo baseado no mesmo princípio de funcionamento de um motor linear de indução, onde a interação de um campo magnético viajante produzido pelo primário do dispositivo com uma superfície de boa condutividade elétrica induz correntes parasitas que levam à produção de uma força de propulsão. O movimento planar sobre essa superfície é produzido através da movimentação linear em dois eixos ortogonais. Uma aplicação deste movimento é na propulsão de uma plataforma equipada com câmeras e sensores para a realização da inspeção em uma superfície metálica, que se beneficiaria da força normal que o motor planar de indução produz quando acionado sobre uma superfície ferromagnética para anexar a plataforma à superfície. Um modelo analítico que fornece equações para o campo elétrico e magnético é apresentado, e simulações numéricas baseadas no método dos elementos finitos são realizadas para avaliar o comportamento do dispositivo utilizando três tipos diferentes de superfícies como secundário: um secundário com duas camadas formadas por uma chapa de alumínio com outra de aço por baixo; apenas a chapa de alumínio; e apenas a chapa de aço. As distribuições de campo magnético calculadas por estes dois modelos teóricos mostram boa concordância entre si, e são utilizadas para calcular as forças de propulsão e normal produzidas pelo atuador. Medidas experimentais são realizadas em um protótipo de atuador planar de indução, e seus resultados são comparados com os resultados obtidos nos modelos teóricos, mostrando uma boa concordância e potencial para a aplicação do atuador planar de indução na inspeção de superfícies horizontais. / An induction planar actuator is a device that, based on the operating principle of a linear induction motor, in which the interaction between a travelling magnetic field produced by the primary of the device and a conducting surface generates eddy currents in the surface and leads to the generation of a thrust force. The device produces planar motion over this surface through movement on two orthogonal axis. An application of this movement is in a platform for the inspection of metallic surfaces, which is driven by the planar induction motor and equipped with cameras and sensors to inspect the surface. This application benefits from the normal force produced by the induction planar actuator operating over a ferromagnetic surface to attach the driving platform to it. An analytical model with equations for the electric and magnetic fields is presented, and numerical simulations based on the finite element method are carried out to assess the behaviour of the device using three different surfaces as secondary: a double-layered secondary formed by an aluminum plate over a steel plate; a aluminum only plate; and a single steel plate. The distributions for the magnetic field computed through these theoretical models show good agreement, and are employed to evaluate the thrust and normal forces produced by the planar induction actuator. Experimental measurements are made on a prototype of the device, and the results are compared to the results of the theoretical models, showing good agreement and potential in the application of the induction planar motor for the inspection of horizontal metallic surfaces.
179

Estudo das propriedades ópticas e estruturais de polifluorenos por meio de espectroscopia de filmes ultrafinos e de moléculas isoladas / Study of optical and structural properties of polyfluorenes through ultrathin film and single molecule spectroscopy

Araújo, Francineide Lopes de 01 April 2014 (has links)
Nesta dissertação foram investigadas as propriedades ópticas e estruturais em filmes ultrafinos e de um sistema de moléculas isoladas de poli (9,9 dioctilfluoreno) (PFO). As amostras poliméricas foram produzidas sobre substrato de quartzo empregando a técnica de spin-coating a partir de soluções de PFO em clorofórmio. Através desse método foi possível obter filmes extremamente finos e moléculas isoladas, com boas condições para o estudo de processos fotofísicos. Técnicas espectroscópicas, tais como, microscopia confocal de fluorescência (LSMC), espectroscopia de absorção UV/Vis, bem como espectroscopia de fotoluminescência foram utilizadas neste trabalho. Inicialmente, o método de preparação dos filmes através de sucessivas diluições foi avaliado pelos espectros de absorção mostrando que é possível obter informação da absorção molecular por medidas de absorbância em condições extremas de baixa diluição. Medidas de fotoluminescência a baixa temperatura de 5 K mostraram que a fase &#946; pode ser induzida em filmes ultrafinos de PFO em clorofórmio. Através da técnica de microscopia confocal foi realizada a sondagem de um pequeno conjunto molecular considerado neste trabalho como sistema de molécula isolada, no qual permitiu um melhor entendimento sobre os mecanismos associados à tensão e/ou a organização da cadeia polimérica (fase planar &#946; e fase não planar), induzida pelo substrato, que afeta fortemente as propriedades de emissão. Emissões foram resolvidas pela primeira vez em moléculas isoladas entre as energias da fase &#946; e da fase não planar que foram associadas a perturbações da estrutura planar por conformações primárias da cadeia, como dobras e torções distribuídas ao longo da cadeia. Além disso, moléculas isoladas de PFO sobre o substrato de quartzo possuem a estrutura da fase &#946; congelada à temperatura ambiente. Esta estrutura é perturbada pelas vibrações atômicas do substrato que alargam a linhas de emissão, sem quebrar a conformação ordenada rígida imposta pelo substrato. Além disso, foi possível comparar as propriedades como eficiência da emissão e migração do estado excitado entre filmes ultrafinos e em moléculas isoladas. / Optical and structural properties of ultrathin films and isolated molecules of poly (9,9 dioctylfluorene) (PFO) are investigated in this work. The polymeric films were produced on top of quartz substrate by spin-coating technique from PFO chloroform solutions having different dilutions. Through this method it was possible to obtain extremely thin films (<10 nm) and isolated molecules, with suitable quality that allowed the study of photophysical processes at molecular level. We employed three spectroscopic techniques to characterize such ultrathin films, namely, confocal fluorescence microscopy (LSMC), UV/Vis absorption spectroscopy and temperature dependent photoluminescence spectroscopy. The spincoated films were initially prepared though successive dilutions in PFO/CHCl3 solutions. We demonstrate that it is possible to obtain information of the molecular structure by using absorbance measurements under extreme conditions of low molecular dilution. Measurements of photoluminescence at low temperatures (5 K) showed that the phase &#946; may be induced in ultrathin films of PFO in chloroform. Using confocal microscopy we probed a small molecular assembly considered in this work as an isolated molecule system, which allowed to understand of mechanisms associated with stress and/or the organization of the polymer chain (phase planar &#946; and phase non-planar), induced by the substrate, which strongly affects the emission properties. Emissions in isolated molecules have been resolved for the first time between the energies of the &#946; phase and the amorphous phase that were associated to perturbations of the planar structure by primary chain conformations, such as folds and twists distributed along the chain. In addition, PFO isolated molecules have frozen &#946; phase structure at room temperature on the quartz substrate. This structure is disturbed by the atomic vibrations of the substrate that broaden the emission lines without breaking the ordered conformation imposed by the rigid substrate. Moreover, it was possible to compare the properties of the efficiency emission and excited state migration between ultrathin films and isolated molecules.
180

The Analysis, Simulations, and Applications of the Structure of the Nonlinear Waveguide

Lin, Jyh-Shiuan 10 July 2002 (has links)
In this paper, we used the beam propagation method to analyze the characteristics of nonlinear optical waveguides. Refractive indexes of media in planar optical waveguides are changed with the electric field intensity called nonlinear planar optical waveguides. We use the modal theory to solve the three-layer planar optical waveguide with the guiding film is nonlinear. We not only obtained dispersion relation curves, but also observed the affections of the input power to field distributions. By the basic theory of this, we proposed a novel method to analyze multi-layer planar optical waveguides with nonlinear or localized nonlinear guiding films.By the theory and novel method we pointed out, on the other hand, we proposed an all-optical switch and analyze the all-optical device by the beam propagation method.

Page generated in 0.0981 seconds