• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel sensor design for detection of dangerous contaminated marine biotoxins : a thesis submitted in fulfilment of the requirements for the degree of Master of Engineering in Information and Telecommunication Engineering, School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

Abdul Rahman, Mohd Syaifudin Bin January 2009 (has links)
Planar electromagnetic sensing system has been used as one of the NDT methods to evaluate the material properties i.e., to evaluate near-surface properties such as conductivity, permeability and dielectric properties. The applications of planar electromagnetic sensors will depend on both the characteristic of the sensor type chosen and also the characteristic of material under test. Conventional planar interdigital sensors and novel planar interdigital sensors have been designed, fabricated and tested for detection of dangerous marine biotoxins in seafood. Our main objective is to sense the presence of dangerous contaminated acid in mussels and other seafoods. Initial studies were conducted with three peptide derivatives namely Sarcosine, Proline and Hydroxylproline. These three chemicals are structurally closely related to our target molecule (domoic acid). The initial results have shown that all sensors respond very well to the chemicals and it is possible to discriminate the different chemicals from the output of the sensor. Novel interdigital sensors have shown better sensitivity measurement compared to conventional interdigital sensors. The novel interdigital sensors were then being tested with three seafood products. Results from the analysis have shown that novel interdigital sensor with configuration #1 (Sensor_1) has better sensitivity compared to other sensors. Sensor_1 has been chosen for experiment using proline and mussels. The changes in sensor sensitivity were analysed with mussels before and after adding the proline. The presence of proline on the mussel surface and also injected proline to the mussel samples were clearly detected by Sensor_1. Further experiment was conducted with small amount of domoic acid (0.5 µg to 5.0 µg) injected to a mussel and it was found that Sensor_1 was able to detect small amount of domoic acid (1.0 µg) injected into the mussel sample. Sensor_1 was able to detect approximately 12.6 µg/g of domoic acid in mussel meat. Three threshold levels of particular sample thickness have been established for detection of domoic acid. The first prototype of a low cost sensing system known as SIT (Seafood Inspection Tool) has been developed. The outcomes from the experiments provide chances of opportunity for further research in developing a low cost miniature type of sensors for reliable sensing system for commercial use.
2

Novel sensor design for detection of dangerous contaminated marine biotoxins : a thesis submitted in fulfilment of the requirements for the degree of Master of Engineering in Information and Telecommunication Engineering, School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

Abdul Rahman, Mohd Syaifudin Bin January 2009 (has links)
Planar electromagnetic sensing system has been used as one of the NDT methods to evaluate the material properties i.e., to evaluate near-surface properties such as conductivity, permeability and dielectric properties. The applications of planar electromagnetic sensors will depend on both the characteristic of the sensor type chosen and also the characteristic of material under test. Conventional planar interdigital sensors and novel planar interdigital sensors have been designed, fabricated and tested for detection of dangerous marine biotoxins in seafood. Our main objective is to sense the presence of dangerous contaminated acid in mussels and other seafoods. Initial studies were conducted with three peptide derivatives namely Sarcosine, Proline and Hydroxylproline. These three chemicals are structurally closely related to our target molecule (domoic acid). The initial results have shown that all sensors respond very well to the chemicals and it is possible to discriminate the different chemicals from the output of the sensor. Novel interdigital sensors have shown better sensitivity measurement compared to conventional interdigital sensors. The novel interdigital sensors were then being tested with three seafood products. Results from the analysis have shown that novel interdigital sensor with configuration #1 (Sensor_1) has better sensitivity compared to other sensors. Sensor_1 has been chosen for experiment using proline and mussels. The changes in sensor sensitivity were analysed with mussels before and after adding the proline. The presence of proline on the mussel surface and also injected proline to the mussel samples were clearly detected by Sensor_1. Further experiment was conducted with small amount of domoic acid (0.5 µg to 5.0 µg) injected to a mussel and it was found that Sensor_1 was able to detect small amount of domoic acid (1.0 µg) injected into the mussel sample. Sensor_1 was able to detect approximately 12.6 µg/g of domoic acid in mussel meat. Three threshold levels of particular sample thickness have been established for detection of domoic acid. The first prototype of a low cost sensing system known as SIT (Seafood Inspection Tool) has been developed. The outcomes from the experiments provide chances of opportunity for further research in developing a low cost miniature type of sensors for reliable sensing system for commercial use.
3

Novel sensor design for detection of dangerous contaminated marine biotoxins : a thesis submitted in fulfilment of the requirements for the degree of Master of Engineering in Information and Telecommunication Engineering, School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

Abdul Rahman, Mohd Syaifudin Bin January 2009 (has links)
Planar electromagnetic sensing system has been used as one of the NDT methods to evaluate the material properties i.e., to evaluate near-surface properties such as conductivity, permeability and dielectric properties. The applications of planar electromagnetic sensors will depend on both the characteristic of the sensor type chosen and also the characteristic of material under test. Conventional planar interdigital sensors and novel planar interdigital sensors have been designed, fabricated and tested for detection of dangerous marine biotoxins in seafood. Our main objective is to sense the presence of dangerous contaminated acid in mussels and other seafoods. Initial studies were conducted with three peptide derivatives namely Sarcosine, Proline and Hydroxylproline. These three chemicals are structurally closely related to our target molecule (domoic acid). The initial results have shown that all sensors respond very well to the chemicals and it is possible to discriminate the different chemicals from the output of the sensor. Novel interdigital sensors have shown better sensitivity measurement compared to conventional interdigital sensors. The novel interdigital sensors were then being tested with three seafood products. Results from the analysis have shown that novel interdigital sensor with configuration #1 (Sensor_1) has better sensitivity compared to other sensors. Sensor_1 has been chosen for experiment using proline and mussels. The changes in sensor sensitivity were analysed with mussels before and after adding the proline. The presence of proline on the mussel surface and also injected proline to the mussel samples were clearly detected by Sensor_1. Further experiment was conducted with small amount of domoic acid (0.5 µg to 5.0 µg) injected to a mussel and it was found that Sensor_1 was able to detect small amount of domoic acid (1.0 µg) injected into the mussel sample. Sensor_1 was able to detect approximately 12.6 µg/g of domoic acid in mussel meat. Three threshold levels of particular sample thickness have been established for detection of domoic acid. The first prototype of a low cost sensing system known as SIT (Seafood Inspection Tool) has been developed. The outcomes from the experiments provide chances of opportunity for further research in developing a low cost miniature type of sensors for reliable sensing system for commercial use.
4

Capacitorless Power Electronics Converters Using Integrated Planar Electro-Magnetics

Haitham M Kanakri (18928150) 03 September 2024 (has links)
<p dir="ltr">The short lifespan of capacitors in power electronics converters is a significant challenge. These capacitors, often electrolytic, are vital for voltage smoothing and frequency filtering. However, their susceptibility to heat, ripple current, and aging can lead to premature faults. This can cause issues like output voltage instability and short circuits, ultimately resulting in catastrophic failure and system shutdown. Capacitors are responsible for 30% of power electronics failures.</p><p dir="ltr">To tackle this challenge, scientists, researchers, and engineers are exploring various approaches detailed in technical literature. These include exploring alternative capacitor technologies, implementing active and passive cooling solutions, and developing advanced monitoring techniques to predict and prevent failures. However, these solutions often come with drawbacks such as increased complexity, reduced efficiency, or higher upfront costs. Additionally, research in material science is ongoing to develop corrosion-resistant capacitors, but such devices are not readily available.</p><p dir="ltr">This dissertation presents a capacitorless solution for dc-dc and dc-ac converters. The proposed solution involves harnessing parasitic elements and integrating them as intrinsic components in power converter technology. This approach holds the promise of enhancing power electronics reliability ratings, thereby facilitating breakthroughs in electric vehicles, compact power processing units, and renewable energy systems. The central scientific premise of this proposal is that the capacitance requirement in a power converter can be met by deliberately augmenting parasitic components.</p><p dir="ltr">Our research hypothesis that incorporating high dielectric material-based thin-films, fabricated using nanotechnology, into planar magnetics will enable the development of a family of capacitorless electronic converters that do not rely on discrete capacitors. This innovative approach represents a departure from the traditional power converter schemes employed in industry.</p><p dir="ltr">The first family of converters introduces a novel capacitorless solid-state power filter (SSPF) for single-phase dc-ac converters. The proposed configuration, comprising a planar transformer and an H-bridge converter operating at high frequency, generates sinusoidal ac voltage without relying on capacitors. Another innovative dc-ac inverter design is the twelve step six-level inverter, which does not incorporate capacitors in its structure.</p><p dir="ltr">The second family of capacitorless topologies consists of non-isolated dc-dc converters, namely the buck converter and the buck-boost converter. These converters utilize alternative materials with high dielectric constants, such as calcium copper titanate (CCTO), to intentionally enhance specific parasitic components, notably inter capacitance. This innovative approach reduces reliance on external discrete capacitors and facilitates the development of highly reliable converters.</p><p dir="ltr">The study also includes detailed discussions on the necessary design specifications for these parasitic capacitors. Furthermore, comprehensive finite element analysis solutions and detailed circuit models are provided. A design example is presented to demonstrate the practical application of the proposed concept in electric vehicle (EV) low voltage side dc-dc power converters used to supply EVs low voltage loads.</p>

Page generated in 0.0994 seconds