• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 11
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Varianty problému obarvení / Graph coloring problems

Lidický, Bernard January 2011 (has links)
Title: Graph coloring problems Author: Bernard Lidický Department: Department of Applied Mathematics Supervisor: doc. RNDr. Jiří Fiala, Ph.D. Abstract: As the title suggests, the central topic of this thesis is graph coloring. The thesis is divided into three parts where each part focuses on a different kind of coloring. The first part is about 6-critical graphs on surfaces and 6-critical graphs with small crossing number. We give a complete list of all 6-critical graphs on the Klein bottle and complete list of all 6-critical graphs with crossing number at most four. The second part is devoted to list coloring of planar graphs without short cycles. We give a proof that planar graphs without 3-,6-, and 7- cycles are 3-choosable and that planar graphs without triangles and some constraints on 4-cycles are also 3-choosable. In the last part, we focus on a recent concept called packing coloring. It is motivated by a frequency assignment problem where some frequencies must be used more sparsely that others. We improve bounds on the packing chromatic number of the infinite square and hexagonal lattices. Keywords: critical graphs, list coloring, packing coloring, planar graphs, short cycles
12

Grafos, a fórmula de Euler e os poliedros regulares

BRITO, Adriana Priscila de 08 August 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T12:41:18Z No. of bitstreams: 1 Adriana Priscila de Brito.pdf: 1439366 bytes, checksum: 6c39b441ca6cf64e146c11f1a5822457 (MD5) / Made available in DSpace on 2017-03-28T12:41:18Z (GMT). No. of bitstreams: 1 Adriana Priscila de Brito.pdf: 1439366 bytes, checksum: 6c39b441ca6cf64e146c11f1a5822457 (MD5) Previous issue date: 2014-08-08 / This presentation provides an introduction to graph theory, making the connection between some of its concepts and the and characterization of Regular Polyhedra. Special emphasis will be given to the study of Eulerian graphs, Euler's Formula, Graphs and Planar Graphs Platonic. Finally, a proposed instructional sequence that focuses on introducing the concept of the graph elementary school students, making connections with the regular polyhedra is presented. / O presente trabalho tem como objetivo principal apresentar uma introdução à Teoria dos Grafos, fazendo a ligação entre alguns dos seus conceitos e a caracterização dos Poliedros Regulares. Será dada uma ênfase especial ao estudo dos Grafos Eulerianos, da Fórmula de Euler, dos Grafos Planares e dos Grafos Platônicos. Por fim, será apresentada uma proposta de sequência didática que tem como foco introduzir o conceito de grafo a alunos do ensino básico, fazendo ligações com os Poliedros Regulares.
13

Visual Analytics of Cascaded Bottlenecks in Planar Flow Networks

Post, Tobias, Gillmann, Christina, Wischgoll, Thomas, Hamann, Bernd, Hagen, Hans 25 January 2019 (has links)
Finding bottlenecks and eliminating them to increase the overall flow of a network often appears in real world applications, such as production planning, factory layout, flow related physical approaches, and even cyber security. In many cases, several edges can form a bottleneck (cascaded bottlenecks). This work presents a visual analytics methodology to analyze these cascaded bottlenecks. The methodology consists of multiple steps: identification of bottlenecks, identification of potential improvements, communication of bottlenecks, interactive adaption of bottlenecks, and a feedback loop that allows users to adapt flow networks and their resulting bottlenecks until they are satisfied with the flow network configuration. To achieve this, the definition of a minimal cut is extended to identify network edges that form a (cascaded) bottleneck. To show the effectiveness of the presented approach, we applied the methodology to two flow network setups and show how the overall flow of these networks can be improved.
14

Adinkras and Arithmetical Graphs

Weinstein, Madeleine 01 January 2016 (has links)
Adinkras and arithmetical graphs have divergent origins. In the spirit of Feynman diagrams, adinkras encode representations of supersymmetry algebras as graphs with additional structures. Arithmetical graphs, on the other hand, arise in algebraic geometry, and give an arithmetical structure to a graph. In this thesis, we will interpret adinkras as arithmetical graphs and see what can be learned. Our work consists of three main strands. First, we investigate arithmetical structures on the underlying graph of an adinkra in the specific case where the underlying graph is a hypercube. We classify all such arithmetical structures and compute some of the corresponding volumes and linear ranks. Second, we consider the case of a reduced arithmetical graph structure on the hypercube and explore the wealth of relationships that exist between its linear rank and several notions of genus that appear in the literature on graph theory and adinkras. Third, we study modifications of the definition of an arithmetical graph that incorporate some of the properties of an adinkra, such as the vertex height assignment or the edge dashing. To this end, we introduce the directed arithmetical graph and the dashed arithmetical graph. We then explore properties of these modifications in an attempt to see if our definitions make sense, answering questions such as whether the volume is still an integer and whether there are still only finitely many arithmetical structures on a given graph.
15

Random planar structures and random graph processes

Kang, Mihyun 27 July 2007 (has links)
Diese Habilitationsschrift richtete auf zwei diskrete Strukturen aus: planare Strukturen und zufällige Graphen-Prozesse. Zunächst werden zufällige planare Strukturen untersucht, mit folgende Gesichtspunkte: - Wieviele planare Strukturen gibt es? - Wie kann effizient eine zufällige planare Struktur gleichverteilt erzeugt werden? - Welche asymptotischen Eigenschaften hat eine zufällige planare Struktur mit hoher Wahrscheinlichkeit? Um diese Fragen zu beantworten, werden die planaren Strukturen in Teile mit höherer Konnektivität zerlegt. Für die asymptotische Enumeration wird zuerst die Zerlegung als das Gleichungssystem der generierenden Funktionen interpretiert. Auf dem Gleichungssystem wird dann Singularitätenanalyse angewendet. Für die exakte Enumeration und zufällige Erzeugung wird die rekursive Methode verwendet. Für die typischen Eigenschaften wird die probabilistische Methode auf asymptotischer Anzahl angewendet. Des Weiteren werden zufällige Graphen-Prozesse untersucht. Zufällige Graphen wurden zuerst von Erdos und Renyi eingeführt und untersucht weitgehend seitdem. Ein zufälliger Graphen-Prozess ist eine Markov-Kette, deren Zustandsraum eine Menge der Graphen mit einer gegebenen Knotenmenge ist. Der Prozess fängt mit isolierten Konten an, und in jedem Ablaufschritt entsteht ein neuer Graph aus dem aktuellen Graphen durch das Hinzufügen einer neuen Kante entsprechend einer vorgeschriebenen Regel. Typische Fragen sind: - Wie ändert sich die Wahrscheinlichkeit, dass ein von einem zufälligen Graphen-Prozess erzeugter Graph zusammenhängend ist? - Wann erfolgt der Phasenübergang? - Wie groß ist die größte Komponente? In dieser Habilitationsschrift werden diese Fragen über zufällige Graphen-Prozesse mit Gradbeschränkungen beantwortet. Dafür werden probabilistische Methoden, insbesondere Differentialgleichungsmethode, Verzweigungsprozesse, Singularitätsanalyse und Fourier-Transformationen, angewendet. / This thesis focuses on two kinds of discrete structures: planar structures, such as planar graphs and subclasses of them, and random graphs, particularly graphs generated by random processes. We study first planar structures from the following aspects. - How many of them are there (exactly or asymptotically)? - How can we efficiently sample a random instance uniformly at random? - What properties does a random planar structure have, with high probability? To answer these questions we decompose the planar structures along the connectivity. For the asymptotic enumeration we interpret the decomposition in terms of generating functions and derive the asymptotic number, using singularity analysis. For the exact enumeration and the uniform generation we use the recursive method. For typical properties of random planar structures we use the probabilistic method, together with the asymptotic numbers. Next we study random graph processes. Random graphs were first introduced by Erdos and Renyi and studied extensively since. A random graph process is a Markov chain whose stages are graphs on a given vertex set. It starts with an empty graph, and in each step a new graph is obtained from a current graph by adding a new edge according to a prescribed rule. Recently random graph processes with degree restrictions received much attention. In the thesis, we study random graph processes where the minimum degree grows quite quickly with the following questions in mind: - How does the connectedness of a graph generated by a random graph process change as the number of edges increases? - When does the phase transition occur? - How big is the largest component? To investigate the random graph processes we use the probabilistic method, Wormald''s differential equation method, multi-type branching processes, and the singularity analysis.
16

系列平行圖的長方形數與和絃圖數 / The Boxicity and Chordality of a Series-Parallel Graph

周佳靜 Unknown Date (has links)
一個圖形G = (V,E),如果可以找到最小k個和弦圖,則此圖形G = (V,E)的和弦圖數是k。 在這篇論文中,我們呈現存在一個系列平行圖的boxicity是3,且和弦圖數是1或2,存在一個平面圖形的和弦圖數是3。 / The chordality of G = (V,E) is dened as the minimum k such that we can write E = E1n...nEk, where each (V,Ei) is a chordal graph. In this thesis, we present that (1) there are series-parallel graphs with boxicity 3, (2) there are series-parallel graphs with chordality 1 or 2, and (3) there are planar graphs with chordality 3.
17

Simultaneous Graph Representation Problems

Jampani, Krishnam Raju January 2011 (has links)
Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous representation problem for several graph classes. For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs or belongs to exactly one of them. Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes. For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs. We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs.
18

Circular colorings and acyclic choosability of graphs

Roussel, Nicolas 23 December 2009 (has links)
Abstract: This thesis studies five kinds of graph colorings: the circular coloring, the total coloring, the (d; 1)-total labeling, the circular (r; 1)-total labeling, and the acyclic list coloring. We give upper bounds on the circular chromatic number of graphs with small maximum average degree, mad for short. It is proved that if mad(G)<22=9 then G has a 11=4-circular coloring, if mad(G) < 5=2 then G has a 14=5-circular coloring. A conjecture by Behzad and Vizing implies that £G+2 colors are always sufficient for a total coloring of graphs with maximum degree £G. The only open case for planar graphs is for £G = 6. Let G be a planar in which no vertex is contained in cycles of all lengths between 3 and 8. If £G(G) = 6, then G is total 8-colorable. If £G(G) = 8, then G is total 9-colorable. Havet and Yu [23] conjectured that every subcubic graph G ̸=K4 has (2; 1)-total number at most 5. We confirm the conjecture for graphs with maximum average degree less than 7=3 and for flower snarks. We introduce the circular (r; 1)-total labeling. As a relaxation of the aforementioned conjecture, we conjecture that every subcubic graph has circular (2; 1)-total number at most 7. We confirm the conjecture for graphs with maximum average degree less than 5=2. We prove that every planar graph with no cycles of lengths 4, 7 and 8 is acyclically 4-choosable. Combined with recent results, this implies that every planar graph with no cycles of length 4;k; l with 5 6 k < l 6 8 is acyclically 4-choosable.
19

Simultaneous Graph Representation Problems

Jampani, Krishnam Raju January 2011 (has links)
Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous representation problem for several graph classes. For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs or belongs to exactly one of them. Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes. For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs. We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs.
20

Decomposição e largura em árvore de grafos planares livres de ciclos pares induzidos / Decomposition and width in tree of graphs to glide free of cycles induced pairs

Silva, Aline Alves da January 2007 (has links)
SILVA, Aline Alves da. Decomposição e largura em árvore de grafos planares livres de ciclos pares induzidos. 2007. 80 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-08T17:52:45Z No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-13T12:18:29Z (GMT) No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) / Made available in DSpace on 2016-07-13T12:18:29Z (GMT). No. of bitstreams: 1 2007_dis_aasilva.pdf: 635256 bytes, checksum: 0ac10f7ac58ad14294969b2e4a830ce0 (MD5) Previous issue date: 2007 / The definitions of tree decomposition and treewidth were introduced by Robertson and Seymour in their series of papers on graph minors, published during the nineties. It is known that many NP-hard problems can be polynomially solved if a tree decomposition of bounded treewidth is given. So, it is of interest to bound the treewidth of certain classes of graphs. In this context, the planar graphs seem to be specially challenging because, in despite of having many known bounded metrics (for example, chromatic number), they have unbounded treewidth. So, an alternative approach is to restrict ourselves to a subclass of planar graphs. In this work, we investigate the class of even-hole-free planar graphs. We show that if G is an even-hole-free planar graph, then it does not contain a subdivision of the 10£10 grid. So, if the grid minors of G are obtained from subdivisions, then G has treewidth at most 49. Furthermore, two polynomial, non-exact algorithms to compute a tree decomposition of a even-hole-free planar graph are given, both based on known characterizations of even-hole-free graphs. In the ¯rst one, a tree decomposition is built from basic graphs by concatenating the tree decomposition of small pieces via the clique, k-stars (k = 1; 2; 3) and 2-join cutsets. In the second one, a tree decomposition is built by including one by one the vertices of G, following their bi-simplicial order. / Os conceitos de Decomposição em Árvore e Largura em Árvore foram introduzidos por Robertson e Seymour em sua série de artigos sobre menores de grafos, publicados ao longo da década de 90. Sabe-se que muitos problemas NP - difíceis podem ser resolvidos polinomialmente para um grafo G, dada uma decomposição em Árvore de G de largura limitada. Logo, limitar a largura em árvore de uma classe de grafos torna-se um objeto de estudo de grande interesse. Neste contexto, a classe dos grafos planares se mostra bastante intrigante, uma vez que, apesar de possuir outras métricas limitadas em valores baixos (por exemplo, número cromático), não possui largura em árvore limitada. Desta forma, uma alternativa é restringir a classe estudada para uma subclasse dos grafos planares. Neste trabalho, nós investigamos a classe dos grafos planares livres de buracos pares. Nós mostramos que se G é um grafo planar livre de buracos pares, então ele não contém uma subdivisão de uma grade 10 £ 10. Portanto, se os menores grades de G são obtidos de subdivisões G tem largura em árvore no máximo 49. Além disso, dois algoritmos não exatos polinomiais para computar uma decomposição em árvore de um grafo planar livre de buracos pares são apresentados, ambos baseados em caracterizações conhecidas de tal classe de grafos. No primeiro algoritmo, uma decomposição em árvore é construída a partir de grafos básicos pela concatenação de decomposições em árvores de pedaços pequenos via os cortes clique, k-estrelas (k = 1; 2; 3) e 2-join. No segundo, uma decomposição em árvore é construída pela inclusão dos vértices de G um a um, seguindo sua ordem bi-simplicial.

Page generated in 0.0667 seconds