51 |
Dynamics of perturbation modes in protoplanetary discs : new effects of self-gravity and velocity shearMamatsashvili, George January 2011 (has links)
Protoplanetary discs, composed of gas and dust, usually surround young stellar objects and serve two main purposes: they determine the accretion of matter onto the central object and also represent sites of planet formation. The accretion proceeds through the transport of angular momentum outwards allowing the disc matter to fall towards the centre. A mechanism responsible for the transport can be turbulence, waves or other coherent structures originating from various instabilities in discs that could, in addition, play a role in the planet formation process. For an understanding of these instabilities, it is necessary to study perturbation dynamics in differentially rotating, or sheared media. Thus, this thesis focuses on new aspects in the perturbation dynamics in non-magnetised protoplanetary discs that arise due to their self-gravity and velocity shear associated with the disc’s differential rotation. The analysis is carried out in the framework of the widely employed local shearing box approximation. We start with 2D discs and then move on to 3D ones. In 2D discs, there are two basic perturbation types/modes – spiral density waves and vortices – that are responsible for angular momentum transport and that can also contribute to accelerating planet formation. First, in the linear regime, we demonstrate that the vortical mode undergoes large growth due to self-gravity and in this process generates density waves via shear-induced linear mode coupling phenomenon. This is noteworthy, because commonly only density waves are considered in self-gravitating discs. Then we investigate vortex dynamics in the non-linear regime under the influence of self-gravity by means of numerical simulations. It is shown that vortices are no longer well-organised and long-lived structures, unlike those occurring in non-self-gravitating discs. They undergo recurring phases (lasting for a few disc rotation periods) of formation, growth and eventual destruction. We also discuss the dust trapping capability of such transient vortices. Perturbation dynamics in 3D vertically stratified discs is richer, as there are more mode types. We first consider non-axisymmetric modes in non-self-gravitating discs and then only axisymmetric modes in the more complicated case when self-gravity is present. Specifically, in non-self-gravitating discs with superadiabatic vertical stratification, motivated by the recent results on the transport properties of incompressible convection, we show that when compressibility is taken into account, the non-axisymmetric convective mode excites density waves via the same shear-induced linear mode coupling mechanism mentioned above. These generated density waves transport angular momentum outwards in the trailing phase, and we suggest that they may aid and enhance the transport due solely to convection in the non-linear regime, where the latter becomes outward. In the final part of the thesis, we carry out a linear analysis of axisymmetric vertical normal modes in stratified self-gravitating discs. Although axisymmetric modes do not display shear-induced couplings, their analysis provides insight into how gravitational instabilities develop in the 3D case and their onset criterion. We examine how the structure of dispersion curves and eigenfunctions of 3D modes are influenced by self-gravity, which mode first becomes gravitationally unstable and thus determines the onset criterion and nature of the gravitational instability in stratified discs. We also contrast the more exact instability criterion obtained with our 3D model with that of density waves in 2D discs. Based on these findings, we discuss the origin of 3D behaviour of perturbations involving noticeable disc surface distortions, as seen in some numerical simulations of self-gravitating discs.
|
52 |
Doppler tomographic observations of exoplanetary transitsJohnson, Marshall Caleb 24 September 2013 (has links)
Transiting planet candidates around rapidly rotating stars, a number of which have been found by the Kepler mission, are not amenable to follow-up via the usual radial velocity techniques due to their rotationally broadened stellar lines. An alternative method is Doppler tomography. In this method, the distortions of the stellar spectral lines due to subtracted light during the transit are spectroscopically resolved. This allows us to not only validate the transiting planet candidate but also to obtain the spin-orbit misalignment for the system. The spin-orbit misalignment is a powerful statistical tracer of the migration histories of planets. I discuss our project to perform Doppler tomographic observations of Kepler candidates and other transiting planets using the facilities at McDonald Observatory. I present our first transit detection, that of Kepler-13 b, and discuss some other recent results. / text
|
53 |
Resolving the multi-temperature debris disk around γ Doradus with HerschelBroekhoven-Fiene, Hannah 21 December 2011 (has links)
We present Herschel observations of the debris disk around γ Doradus (HD 27290, HIP 19893) from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well-resolved with PACS at 70, 100 and 160 micron and detected with SPIRE at 250 and 350 micron. The 250 micron image is only resolved along the disk's long axis. The SPIRE 500 micron 3 σ detection includes a nearby background source. γ Dor's spectral energy distribution (SED) is sampled in the submillimetre for the first time and modelled with multiple modified-blackbody functions to account for its broad shape. Two approaches are used, both of which reproduce the SED in the same way: a model of two narrow dust rings and a model of an extended, wide dust belt. The former implies the dust rings have temperatures of ~90 and ~40 K, corresponding to blackbody radii of 25 and 135 AU, respectively. The latter model suggests the dust lies in a wide belt extending from 15 to 230 AU. The resolved images, however, show dust extending beyond ~350 AU. This is consistent with other debris disks whose actual radii are observed to be a factor of 2 - 3 times larger than the blackbody radii. Although it is impossible to determine a preferred model from the SED alone, the resolved images suggest that the dust is located in a smooth continuous belt rather than discrete narrow rings. Both models estimate that the dust mass is 6.7 x 10^{-3} Earth masses and that fractional luminosity is 2.5 x 10^{-5}. This amount of dust is within the levels expected from steady state evolution given the age of γ Dor and therefore a transient event is not needed to explain the dust mass. No asymmetries that would hint at a planetary body are evident in the disk at Herschel's resolution. However, the constraints placed on the dust's location suggest that the most likely region to find planets is within 20 AU of the star. / Graduate
|
54 |
Accretion Disks and the Formation of Stellar SystemsKratter, Kaitlin Michelle 18 February 2011 (has links)
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods which we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, very massive stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
|
55 |
Trojitá gravitační mikročočka / Triple gravitational microlensDaněk, Kamil January 2015 (has links)
Gravitational microlenses are stellar- or planetary-mass objects which cause a transient amplification when passing in the foreground of a distant source. We study microlenses that consist of three point masses. Such a model can represent a triple star, a binary star with a planet, a star with two planets, or a star + planet + moon system. Up to date, four planetary systems have been discovered in triple-lens microlensing events. We aim to expand the theory of triple lenses in order to simplify the interpretation of observed data and enable correct analysis in more complex cases. We focus mainly on the classification of triple-lens models with respect to their caustics. For a given source trajectory, the caustic determines prominent features on the light curve and thus its knowledge is essential for the analysis of microlensing events. We map the topology of the critical curve (the main caustic image) and the number of cusps of the caustic in the lens-model parameter space. We introduce methods for the classification of general $n$-point-mass microlenses. The methods are then demonstrated on four two- parameter and three three-parameter models. Furthermore, we study amplification maps for both point sources and extended sources, with an emphasis on new features appearing in triple and general $n$-point-mass...
|
56 |
The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary HabitabilityJanuary 2017 (has links)
abstract: I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M_sol at scaled metallicity values of 0.1-1.5 Z_sol and specific elemental abundance ratio values of 0.44-2.28 O/Fe_sol, 0.58-1.72 C/Fe_sol, 0.54-1.84 Mg/Fe_sol, and 0.5-2.0 Ne/Fe_sol. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M_sol (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience.
In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2017
|
57 |
An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436bLothringer, Joshua D., Benneke, Björn, Crossfield, Ian J. M., Henry, Gregory W., Morley, Caroline, Dragomir, Diana, Barman, Travis, Knutson, Heather, Kempton, Eliza, Fortney, Jonathan, McCullough, Peter, Howard, Andrew W. 17 January 2018 (has links)
GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 mu m. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 mu m. The spectrum is indicative of moderate to high metallicity (similar to 100-1000x solar), while moderate-metallicity scenarios (similar to 100x. solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 mu m in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.
|
58 |
VIP: Vortex Image Processing Package for High-contrast Direct ImagingGomez Gonzalez, Carlos Alberto, Wertz, Olivier, Absil, Olivier, Christiaens, Valentin, Defrère, Denis, Mawet, Dimitri, Milli, Julien, Absil, Pierre-Antoine, Van Droogenbroeck, Marc, Cantalloube, Faustine, Hinz, Philip M., Skemer, Andrew J., Karlsson, Mikael, Surdej, Jean 12 June 2017 (has links)
We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source. position and flux estimation, and sensitivity curve. generation. Among the reference point-spread. function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github. com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.
|
59 |
The Inner 25 au Debris Distribution in the ϵ Eri SystemSu, Kate Y. L., De Buizer, James M., Rieke, George H., Krivov, Alexander V., Löhne, Torsten, Marengo, Massimo, Stapelfeldt, Karl R., Ballering, Nicholas P., Vacca, William D. 25 April 2017 (has links)
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 mu m resolved disk image of is an element of Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 mu m and 15-38 mu m excess spectrum, we examine two proposed origins of the inner debris in is an element of Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.
|
60 |
Simplified Derivation of the Collision Probability of Two Objects in Independent Keplerian OrbitsJeongAhn, Youngmin, Malhotra, Renu 28 April 2017 (has links)
Many topics in planetary studies demand an estimate of the collision probability of two objects moving on nearly Keplerian orbits. In the classic works of Opik and Wetherill, the collision probability was derived by linearizing the motion near the collision points, and there is now a vast amount of literature using their method. We present here a simpler and more physically motivated derivation for non-tangential collisions in Keplerian orbits, as well as for tangential collisions that were not previously considered. Our formulas have the added advantage of being manifestly symmetric in the parameters of the two colliding bodies. In common with the Opik-Wetherill treatments, we linearize the motion of the bodies in the vicinity of the point of orbit intersection (or near the points of minimum distance between the two orbits) and assume a uniform distribution of impact parameter within the collision radius. We point out that the linear approximation leads to singular results for the case of tangential encounters. We regularize this singularity by use of a parabolic approximation of the motion in the vicinity of a tangential encounter.
|
Page generated in 0.059 seconds