1 |
Planned Missing Data in Mediation AnalysisJanuary 2015 (has links)
abstract: This dissertation examines a planned missing data design in the context of mediational analysis. The study considered a scenario in which the high cost of an expensive mediator limited sample size, but in which less expensive mediators could be gathered on a larger sample size. Simulated multivariate normal data were generated from a latent variable mediation model with three observed indicator variables, M1, M2, and M3. Planned missingness was implemented on M1 under the missing completely at random mechanism. Five analysis methods were employed: latent variable mediation model with all three mediators as indicators of a latent construct (Method 1), auxiliary variable model with M1 as the mediator and M2 and M3 as auxiliary variables (Method 2), auxiliary variable model with M1 as the mediator and M2 as a single auxiliary variable (Method 3), maximum likelihood estimation including all available data but incorporating only mediator M1 (Method 4), and listwise deletion (Method 5).
The main outcome of interest was empirical power to detect the mediated effect. The main effects of mediation effect size, sample size, and missing data rate performed as expected with power increasing for increasing mediation effect sizes, increasing sample sizes, and decreasing missing data rates. Consistent with expectations, power was the greatest for analysis methods that included all three mediators, and power decreased with analysis methods that included less information. Across all design cells relative to the complete data condition, Method 1 with 20% missingness on M1 produced only 2.06% loss in power for the mediated effect; with 50% missingness, 6.02% loss; and 80% missingess, only 11.86% loss. Method 2 exhibited 20.72% power loss at 80% missingness, even though the total amount of data utilized was the same as Method 1. Methods 3 – 5 exhibited greater power loss. Compared to an average power loss of 11.55% across all levels of missingness for Method 1, average power losses for Methods 3, 4, and 5 were 23.87%, 29.35%, and 32.40%, respectively. In conclusion, planned missingness in a multiple mediator design may permit higher quality characterization of the mediator construct at feasible cost. / Dissertation/Thesis / Doctoral Dissertation Psychology 2015
|
2 |
Is It More Advantageous to Administer Libqual+® Lite Over Libqual+®? an Analysis of Confidence Intervals, Root Mean Square Errors, and BiasPonce, Hector F. 08 1900 (has links)
The Association of Research Libraries (ARL) provides an option for librarians to administer a combination of LibQUAL+® and LibQUAL+® Lite to measure users' perceptions of library service quality. LibQUAL+® Lite is a shorter version of LibQUAL+® that uses planned missing data in its design. The present study investigates the loss of information in commonly administered proportions of LibQUAL+® and LibQUAL+® Lite when compared to administering LibQUAL+® alone. Data from previous administrations of LibQUAL+® protocol (2005, N = 525; 2007, N = 3,261; and 2009, N = 2,103) were used to create simulated datasets representing various proportions of LibQUAL+® versus LibQUAL+® Lite administration (0.2:0.8, 0.4:0.6. 0.5:0.5, 0.6:0.4, and 0.8:0.2). Statistics (i.e., means, adequacy and superiority gaps, standard deviations, Pearson product-moment correlation coefficients, and polychoric correlation coefficients) from simulated and real data were compared. Confidence intervals captured the original values. Root mean square errors and absolute and relative biases of correlations showed that accuracy in the estimates decreased with increase in percentage of planned missing data. The recommendation is to avoid using combinations with more than 20% planned missing data.
|
3 |
Planned Missing Data Designs in Communication ResearchParsons, Michael M. January 2013 (has links)
No description available.
|
Page generated in 0.0978 seconds