• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 32
  • 3
  • 1
  • Tagged with
  • 86
  • 86
  • 26
  • 23
  • 22
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Seasonal analysis of histone modifications in a natural population of Arabidopsis halleri / ハクサンハタザオ自然集団におけるヒストン修飾の季節解析

Nishio, Haruki 25 July 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19917号 / 理博第4217号 / 新制||理||1606(附属図書館) / 33003 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 工藤 洋, 教授 長谷 あきら, 教授 鹿内 利治 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
52

Individual Experiments to Evaluate the Effects of Plant Population and Planting Date, Cultivar and Plant Growth Regulator Application, and Herbicide and Plant Growth Regulator Application on Cotton (Gossypium hirsutum L.) Growth and Development, Yield, and Fiber Quality

O'Berry, Nathan Brook 06 August 2007 (has links)
Cotton (Gossypium hirsutum L.) growth and development, lint yield, and fiber quality are influenced by many management decisions. Three field experiments examining the interaction of plant population and planting date, and cultivar or herbicide and plant growth regulator application on these parameters were conducted in Virginia during 2005 and 2006 and in North Carolina, South Carolina, and Louisiana during specific years. Experiment I: Plant Population and Planting Date Lint yields were highest with populations of 8.9 and 12.8 plants m¯² compared to 5.3 plants m¯² in Virginia and North Carolina, while in Louisiana the highest yields resulted from populations of 5.8 and 9.5 plants m¯² compared to 17.1 plants m¯². Earlier planted (1 May) cotton produced higher yields relative to later planted (21 May) cotton in Louisiana, while yield was not influenced by planting date in Virginia and North Carolina. The impact of plant population and planting date on cotton appeared to be influenced significantly by heat unit accumulation. Experiment II: Cultivar and Mepiquat Pentaborate Application Mepiquat pentaborate (MPB) application consistently decreased plant height, HNR, and enhanced maturity for all cultivars, compared to untreated cotton. A trend of decreasing yield with increasing MPB application in Virginia was observed. These data suggests that cotton response to MPB application is influenced by cultivar maturity or fruiting interval. Experiment III: Trifloxysulfuron-sodium and Mepiquat Chloride Application Trifloxysulfuron-sodium (TFS) did not influence vegetative growth, maturity, or yield in comparison to untreated cotton. Mepiquat chloride (MC) application reduced vegetative growth and enhanced maturity in most years. The results of this experiment demonstrate that TFS application does not have the same effects on plant growth as MC application. / Master of Science
53

IRRIGATED <em>ZEA MAYS</em> RESPONSE TO NITROGEN AND HIGH PLANT POPULATION DENSITY IN NARROW ROWS

Baniszewski, Julie 01 January 2016 (has links)
Modern genetics have improved maize hybrids to better tolerate stress, use nutrients more efficiently and potentially yield higher. Management practices, such as narrow row technology and high plant population density (PPD) may further improve yields in modern maize under irrigated, non-limiting conditions. High PPD (74, 99, 124, 148 K seeds ha-1) were tested in narrow rows with up to four nitrogen (N) rates in three locations over two years in Kentucky with a modern maize hybrid in irrigated, non-limiting conditions. Results indicate that optimal seeding rates were 99,000 to 124,000 seeds ha-1, providing maximum yield and highest partial return, likely due to increasing seed number ha-1 and greater canopy closure, although seed size declined and pollination was more asynchronous as PPD increased. Excess N did not overcome silking delay or the decline in kernel mass associated with higher PPD, indicating 252 kg N ha-1 was adequate for high yields at any population, although data indicates better utilization of supplied N at higher populations. Implications can be used to implement better management techniques in high-yielding maize to supplement use of improved genetics.
54

Range-wide analysis of the spatial distribution and genetic diversity of Delonix s.l. (Leguminosae) in Madagascar : enhancing herbarium-based conservation assessments

Rivers, Malin C. January 2011 (has links)
Despite their ecological and economic importance, the majority of plant species and their conservation status are poorly known. Only 4% of plants have been assessed globally and listed on the IUCN Red List of Threatened Species; and without plant conservation assessments, many plant species will not feature in conservation planning. Herbarium collection information can significantly increase the number of plant conservation assessments. Thus, the aims of this thesis were: (1) to investigate how the quality of herbarium-based conservation assessments can be optimised; (2) to assess the extent to which herbarium-based conservation assessments reflect the reality on the ground; and (3) to scientifically validate genetic and spatial underpinning of IUCN criteria. Preliminary range-based assessments of the Leguminosae of Madagascar achieved a result consistent with the final conservation rating for over 95% of species when using up to fifteen herbarium specimens. Bioclimatic modelling of range shifts based on future climate change predicted that, in the worst case scenario, up to one third of endemic Leguminosae in Madagascar will be threatened with extinction over the next 100 years. An analysis of the population structure of species of Delonix s.l. (Leguminosae) showed that combining spatial analysis with population genetic data provides a more complete picture of landscape-level population dynamics and the impacts on conservation status. Moreover, range-wide genetic analysis of AFLP markers for four species of Delonix demonstrated a genetic basis for IUCN categories distinguishing between threatened and non-threatened species. Although genetic data are currently not often incorporated in conservation assessments, they are crucial in making accurate management decisions and creating effective action plans for conservation. Only by using all available scientific resources can informed conservation decisions be made and the survival of plants and their associated ecosystems be ensured.
55

População variada de híbridos de milho: uma estratégia de gestão das variabilidades espacial e temporal das lavouras / Corn plant population: a strategy to manage spatial and temporal field variability

Anselmi, Adriano Adelcino 17 June 2016 (has links)
A população de plantas é um dos fatores que impacta fortemente na produtividade da cultura do milho (Zea mays); justá-la localmente é uma das estratégias para gerenciar a variabilidade das lavouras e otimizar o uso de recursos do ambiente que não estão sob o controle do produtor rural, como o tipo de solo e a capacidade de retenção de água. O objetivo desse estudo foi investigar a produtividade de híbridos de milho submetidos à semeadura em taxas variáveis (STV) em unidades de gestão diferenciada (UGD). Foi utilizado o total de dez híbridos de milho testados em cinco níveis de populações de plantas a partir da população regularmente recomendada (60%, 80%, 100%, 120% e 140%). Foram conduzidos cinco experimentos em talhões comerciais entre os anos de 2012 e 2015, no Brasil, na região Centro-Oeste (Maracajú -MS), durante a segunda safra de verão (safrinha) e na região Sul (Piraí do Sul - PR), durante a safra de verão. A pesquisa foi dividida em duas etapas principais: (1) delimitação das UGD e (2) implantação dos experimentos em faixas variando híbridos e população de plantas ao longo das UGD. Foram utilizados mapas históricos de produtividade (MP), mapa de condutividade elétrica do solo (CE) e mapa de altitude como atributos que deram origem às UGD. Dois métodos distintos de agrupamentos foram analisados: o método de \"cluster\" por \"K-means\" e o método pela média normalizada. As análises das UGD foram realizadas com base na estatística descritiva. Os experimentos em faixas tiveram os dados de produtividade referentes aos híbridos, população e UGD submetidos às análises de variância pelo F-teste e ANOVA e análise de regressão em função dos níveis de população de plantas por área. Foi possível discriminar, através das UGD, diferentes níveis de produtividade, CE do solo e concentração de nutrientes (CE, pH, CTC Efetiva, Argila, Areia, V%, M.O, e K), indicando que os procedimentos utilizados nesse estudo para a definição de UGD foram eficientes. O método de formação de UGD pela média normalizada proporcionou maior homogeneidade interna das UGD comparativamente ao método de \"Cluster K-means\". A qualidade da distribuição longitudinal medida pelo espaçamento entre plantas (indicador da efetividade dos níveis de população) variou de 81% a 90% de espaçamentos aceitáveis entre os locais avaliados. A análise de variância foi significativa (P<0,05) para interação tripla entre híbridos, população de plantas e UGD assim com as regressões foram significativas e os melhores modelos tiveram ajuste quadrático para população e produtividade na área da região Centro-Oeste - MS. Nas áreas da região Sul os experimentos não foram significativos. A população de plantas ótima pode diferir em até 5743 pl ha-1 entre as diferentes UGD dentro de um mesmo talhão. Quanto menor a média de produtividade do talhão, mais restritiva é a faixa de população ótima. No entanto, não há uma recomendação simples a respeito da população de plantas ótima para cada UGD. / Plant population per unit area is one of the most important aspects under the farmer\'s control that can influence maize grain yield. As the availability of resources for the growth of plants (like water availability and soil attributes) are not uniform along the fields, and considering the unfeasibility to change the environment setting, plant population per area is a key aspect under the farmer\'s control to optimize the use of these resources. This study aims to carry a comprehensive study of the strategy of variable rate seeding (VRS) within zones of distinct resource availability (management zones - MZ). A seasonal experimental design was set consisting in selecting ten different hybrids and five ranks of plant populations starting with a local recommended seeding rate and offsetting it in 40% and 20% below and above this reference. Five field experiments were conducted in commercial fields from 2012 to 2015 in two regions with distinct growing seasons in Brazil. In the Midwest region (Maracaju - MS) where corn is grown as a secondary crop following soybean within one season, and in the Southern region (Piraí do Sul - PR) where corn is grown as primary crop during the summer season; both under rain fed and no-tillage system. This research was split into two main stages: (1) definition of management zones (MZ) within agricultural fields and (2) implementation of strip tests varying hybrids and plant populations across MZ. The attributes used to delineate MZ were soil electrical conductivity (EC), yield maps (YM) and elevation. Two methods were analyzed to delineate MZ: cluster K-means and standardized average. MZ were analyzed by descriptive statistics. On the experimental data gathered from each seasonexperiment, yield of the hybrids, plant density and MZ were submitted to analysis of variance by F-test, ANOVA and regression analysis. MZ were able to differentiate levels of yield, and soil properties (EC, pH, Effective CTC, clay, sand, V%, MO, and K), suggesting that the procedures to define MZ used in this study were efficient. The standardized average provides greater internal homogeneity of MZ compared with the Cluster K-means. The quality of regular spacing between plants (indicator of seed rate quality) was 90% to 81% at all locations. The analyses of variance were significant (P < 0.05) for triple interaction between hybrids, plant population, and for the MZ at the Midwest region. For fields studied in the South the tests were not significant. The optimal plant population at the Midwest region can vary by up to 5743 pl ha-1 across MZ within the same field. Lower yield averages have a narrow optimal plant population interval. However, there is no simple recommendation regarding the optimal plant population across MZ.
56

Persistência de Stylosantes macrocephala/ capitata no estabelecimento de pastagem de Brachiaria decumbens cv. Basilisk em diferentes densidades de semeadura / Stylosantes macrocephala/ capitata persistence in establishment Brachiaria decumbens cv. Basilisk in different seeding rates

Oliveira, Higor Antonio da Silva 02 June 2015 (has links)
Submitted by Maria Beatriz Vieira (mbeatriz.vieira@gmail.com) on 2017-03-28T12:53:55Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_higor_antonio_da_silva_oliveira.pdf: 563999 bytes, checksum: 2d7a6d08b3e789bcfa7ac69a8464c909 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-04-05T17:36:08Z (GMT) No. of bitstreams: 2 dissertacao_higor_antonio_da_silva_oliveira.pdf: 563999 bytes, checksum: 2d7a6d08b3e789bcfa7ac69a8464c909 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-04-05T17:37:12Z (GMT) No. of bitstreams: 2 dissertacao_higor_antonio_da_silva_oliveira.pdf: 563999 bytes, checksum: 2d7a6d08b3e789bcfa7ac69a8464c909 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-05T17:37:23Z (GMT). No. of bitstreams: 2 dissertacao_higor_antonio_da_silva_oliveira.pdf: 563999 bytes, checksum: 2d7a6d08b3e789bcfa7ac69a8464c909 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-06-02 / Sem bolsa / O objetivo deste trabalho foi avaliar o efeito de diferentes densidades de semeadura de Brachiaria decumbens cv. Brasilisk, em consorciação Stylosantes macrocephala/ capitata (Estilosantes Campo Grande), visando à melhor convivência entre a gramínea e a leguminosa. O experimento foi conduzido no Centro de Ensino Superior de Rondonópolis localizado no município de Rondonópolis. O experimento foi estabelecido em delineamento em blocos casualizados, com cinco tratamentos e cinco repetições, sendo tratamento 1= 3,5 kg, tratamento 2 = 4,0 kg, tratamento 3= 4,5 kg e o tratamento 4= 5,0 kg de semente pura viável (SPV) de Brachiaria decumbens cv Brasilisk. A taxa de semeadura do Stylosantes macrocephala/ capitata, cultivar Campo Grande foi fixada para todos os tratamentos em 3 kg/ha com 60% de germinação. A avaliação ocorreu nos meses de dezembro de 2007 a maio de 2008 e uma segunda avaliação nos meses de agosto a setembro de 2008. Para análise de persistência foram realizadas avaliações aos 7, 30, 50, 270 e 310 (DAE). Já para analise de massa seca foram realizadas avaliações aos 50, 100, 270 e 310 (DAE). O número de plantas de estilosantes/m2 foram influenciadas pela densidade de semeadura e épocas de avaliações. O maior número de plantas de estilosantes/m2 foi observado aos 241,85; 236,38; 256,33 e 214,81 associados as densidades de semeadura de Brachiaria 3,5; 4,0; 4,5 e 5. O maior número de plantas de estilosantes/m2 foram observados com as densidades de semeadura de 4,80; 4,81; 4,61 e 4,59 associados as épocas de avaliações 35;100; 270 e 310 dias após a emergência. A produção de massa seca foram influenciadas apenas pelas épocas de avaliações. A brachiaria decumbens associado ao estilosantes apresentaram maior capacidade produtiva. / The objective of this study was to evaluate the effect of different plant densities of Brachiaria decumbens cv. Brasilisk in intercropping Stylosantes macrocephala/ capitata (Estilosantes Campo Grande), in order to better coexistence between grass and legume. The experiment was conducted Higher Education Center Rondonópolis located in the municipality of Rondonópolis. The experiment was established in a randomized design in blocks with five treatments and five repetitions treatment 1 = 3.5 kg, treatments 2 = 4.0 kg = 4.5 kg treatment 3 and treatment 4 = 5.0 kg of viable pure seed (SPV) of Brachiaria decumbens cv. Brasilisk. The seeding rate was set Estilozantes Campo Grande for all treatments at 3 kg / ha with 60% germination. The experiment was evaluated from December 2007 to May 2008 and a second evaluation in August and September 2008. For continuing review evaluations were performed at 7, 30, 50, 270 and 310 (DAE). As for dry mass analysis assessments were performed at 50, 100, 270 and 310 (DAE). The number of plants estilosantes/m2 were influenced by sowing density and times assessments. The largest number of plants estilosantes/m2 were observed to 241.85; 236.38; 256.33 and 214.81 of the associated 3.5 seeding rates; 4.0; 4.5 and 5. The highest number of plants estilosantes/m2 were observed with 4.80 sowing rates; 4.81; 4.61 and 4.59 times associated assessments 35; 100; 270 and 310 days after emergence. The dry matter yield were influenced only by seasons assessments. The Brachiaria decumbens associated with estilosantes had higher production capacity.
57

Determining optimum plant population densities for three annual green manure crops under weedy and weed-free conditions

Lawley, Yvonne 22 December 2004
Green manure crops are critical to maintaining soil fertility in organic cropping systems. However, little research has been conducted to address their contribution to weed control. Indianhead black lentil (Lens culinaris Medikus), AC Green Fix chickling vetch (Lathyrus sativus L.), and Trapper field pea (Pisum sativum L.) are legumes developed for use as annual green manure crops in the Northern Great Plains. Currently, no plant population density recommendations exist for these three species when grown as green manure crops under weedy conditions. The objective of this research was to determine the yield-density response of these three species under weedy and weedy-free conditions and to develop plant population density recommendations for use as annual green manure crops. Each species was grown at five plant population densities (10, 24, 64, 160, and 400 plants m-2) with weedy and weed-free treatments. Wild oat (Avena fatua L.) and wild mustard (Brassica kaber (D.C.) L.C. Wheeler) were planted in weedy treatments to supplement the natural weed community. Biomass samples and soil moisture measurements were taken at early bud and full bloom to simulate when these crops would be terminated. Biomass samples from the early bud stage were analysed for total nitrogen content. Green manure biomass production for all species was lower under weedy conditions. Weed biomass in weedy treatments decreased with increasing green manure plant population density for all species. Trapper field pea was the most competitive crop while Indianhead black lentil was the least competitive. Although total plot biomass differed among species and green manure crop density, changes in soil moisture levels were not greatly affected. No significant difference in total nitrogen concentration was found among green manure species. Differences in total nitrogen accumulation occurred because of differences in biomass production. Marginal cost analysis based on green manure seed costs and their nitrogen contribution to the value of subsequent wheat crop yield were used to determine optimum plant population densities. Under weedy conditions field pea and black lentil should be planted at densities of 49-78 and 223-300 plants m-2, respectively. Under weed-free conditions plant population densities for field pea and black lentil could be reduced to 45-60 and 184-223 plants m-2, respectively. No profitable plant population density was determined for chickling vetch when assuming a lower nitrogen contribution under both weedy and weed-free conditions. However, when assuming a higher nitrogen contribution, a profitable plant population density for chickling vetch of 24 plants m-2 was determined under weedy conditions and 32 plants m-2 under weed-free conditions.
58

Mathematical Models of <i>Zea mays</i>: Grain Yield and Aboveground Biomass Applied to Ear Flex and within Row Spacing Variability

Ballard, Todd Curtis 01 December 2008 (has links)
Field studies were conducted during the summers of 2007 and 2008 at the Agricultural Research and Education Complex, Western Kentucky University, Warren County, KY and commercial production fields in Caldwell County, KY, Warrick County IN, and Vanderburgh County, IN. The goals of these studies were to further validate the Duncan grain yield model, the Russell aboveground biomass model, and to study the effect of inconsistent spacing within rows on Zea mays L. yield. Plant spacing other than uniform decreases grain yield and profitability. The population experiments conducted at the Warren County location were a randomized complete block design with three planting densities, three varieties (c.v. DeKalb DKC6547, DeKalb DKC6346, DeKalb DKC6478) in 2007 and (DeKalb DKC6478, DeKalb DKC6342, and DeKalb DKC6544) in 2008, and three replications. Seeds were planted in rows 76 cm apart and 9.1 m long with four rows per plot in a no-till system on a Crider Silt Loam with pH of 6.8 and 1.5% organic matter. The effect of variable within row spacing was evaluated in commercial production fields by randomly selecting five adjacent rows of 5.3 meters in length at each location. Grain yield for each row was then curve fitted both linearly and exponentially. Minimizing interspecies competition was essential to evaluating the effects of competition within Zea mays L. A burn-down application of 2,4-D and glyphosate was used prior to planting. The most common weeds in the plots were Sorghum halepense L. (johnsongrass), Trifolium repens L. (white clover), and Taraxacum officinale L. (common dandelion) . Glyphosate was reapplied throughout the growing season due to reemergence of S. halepense and Ipomoea hederacea Jacq. (ivyleaf morningglory). The weight of each ear was recorded and one row from each plot was randomly selected to shell. The moisture content was measured from a subsample twice each row using an electrical conductivity moisture meter. The mean of the two moisture readings was used as the moisture content from the plot. Cob weights from shelled ears were recorded to determine the grain/cob mass ratio. This ratio was used to project the grain weight for the remaining harvested rows. Duncan’s grain yield model and Russell’s biomass model were curve fitted to the data for areas of 0.00040 hectares at the p < 0.05 significance level or greater in all population density plots. Individual plant grain masses were curve fitted to Duncan’s model with p < 0.05 significance in 3 out of 15 plots. Grain mass was negatively correlated (R < 0) with standard deviation of within row spacing in 14 of 15 plots. A linear fit to this trend was significant in only 2 of 15 plots. The Duncan yield curve and the Russell aboveground biomass model fit all 6 genotype by environment interactions for 2007 and 2008 to the α = 0.05 level of confidence when evaluated over a 5.3 meter length on 76.2 cm wide rows. Individual plants fit linearly at α = 0.05 in 9 out of 15 plots. Individual plants fit the Duncan yield curve at α = 0.05 in 4 out of 15 plots. Standard deviation of within row spacing fit grain yield loss significantly at &#; = 0.05 in two of 15 plots. The individual plant spacing and local population density collectively fit nine plots significantly at α = 0.05 or better.
59

Determining optimum plant population densities for three annual green manure crops under weedy and weed-free conditions

Lawley, Yvonne 22 December 2004 (has links)
Green manure crops are critical to maintaining soil fertility in organic cropping systems. However, little research has been conducted to address their contribution to weed control. Indianhead black lentil (Lens culinaris Medikus), AC Green Fix chickling vetch (Lathyrus sativus L.), and Trapper field pea (Pisum sativum L.) are legumes developed for use as annual green manure crops in the Northern Great Plains. Currently, no plant population density recommendations exist for these three species when grown as green manure crops under weedy conditions. The objective of this research was to determine the yield-density response of these three species under weedy and weedy-free conditions and to develop plant population density recommendations for use as annual green manure crops. Each species was grown at five plant population densities (10, 24, 64, 160, and 400 plants m-2) with weedy and weed-free treatments. Wild oat (Avena fatua L.) and wild mustard (Brassica kaber (D.C.) L.C. Wheeler) were planted in weedy treatments to supplement the natural weed community. Biomass samples and soil moisture measurements were taken at early bud and full bloom to simulate when these crops would be terminated. Biomass samples from the early bud stage were analysed for total nitrogen content. Green manure biomass production for all species was lower under weedy conditions. Weed biomass in weedy treatments decreased with increasing green manure plant population density for all species. Trapper field pea was the most competitive crop while Indianhead black lentil was the least competitive. Although total plot biomass differed among species and green manure crop density, changes in soil moisture levels were not greatly affected. No significant difference in total nitrogen concentration was found among green manure species. Differences in total nitrogen accumulation occurred because of differences in biomass production. Marginal cost analysis based on green manure seed costs and their nitrogen contribution to the value of subsequent wheat crop yield were used to determine optimum plant population densities. Under weedy conditions field pea and black lentil should be planted at densities of 49-78 and 223-300 plants m-2, respectively. Under weed-free conditions plant population densities for field pea and black lentil could be reduced to 45-60 and 184-223 plants m-2, respectively. No profitable plant population density was determined for chickling vetch when assuming a lower nitrogen contribution under both weedy and weed-free conditions. However, when assuming a higher nitrogen contribution, a profitable plant population density for chickling vetch of 24 plants m-2 was determined under weedy conditions and 32 plants m-2 under weed-free conditions.
60

Growth strategies, competition and defoliation in five grassland plants /

Glimskär, Anders, January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.

Page generated in 0.1023 seconds