• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Secondary metabolites of Ericaceae species

Karikas, G. A. January 1986 (has links)
No description available.
2

Der Einfluß des primären Stickstoffstoffwechsels auf den Aminosäure- und Sekundärstoffwechsel in Nicotiana tabacum L. / The impact of primary nitrogen metabolism on amino acid and secondary metabolism in Nicotiana tabacum L.

Fritz, Christina January 2006 (has links)
Es ist bekannt, dass Änderungen im Kohlenstoff- bzw. Stickstoffstaus der Pflanzen zu einer parallelen statt reziproken Änderung der kohlenstoff- und stickstoffhaltigen Primärmetabolite führen. Unter diesem Gesichtspunkt wurden in der vorliegenden Arbeit der Aminosäurestoffwechsel und der Sekundärstoffwechsel unter reduzierten Stickstoffbedingungen untersucht. Zur Beeinflussung des Stickstoffstoffwechsels wurden nitratmangelernährte Tabakwildtyppflanzen und Genotypen mit unterschiedlich stark reduzierter Nitratreduktase-Aktivität verwendet. Dieses experimentelle System erlaubt zusätzlich durch den Vergleich Nitrat defizienter Wildtyppflanzen mit Nitrat akkumulierenden NIA-Transformanten Prozesse zu identifizieren, die durch Nitrat gesteuert werden. Die Analysen der Primär- und Sekundärmetabolite wurde in allen Genotypen diurnal durchgeführt, um auch tageszeitlich abhängige Prozesse zu identifizieren. Die Analyse der absoluten Gehalte aller individuellen Aminosäuren enthüllte bei den meisten erstaunlich stabile diurnale Muster mit einem Anstieg während des Tages und einem Abfall in der Nacht in Wildtyppflanzen gewachsen mit ausreichend Nitrat. Dieses Ergebnis legt die Schlussfolgerung nahe, dass die Biosynthese der Aminosäuren koordiniert abläuft. In Pflanzen mit reduziertem Stickstoffstatus haben diese diurnalen Muster jedoch keinen Bestand. Die Kombination des erzeugten stickstoffbasierten Aminosäuredatensatz in Kombination mit einem bereits erzeugten Aminosäuredatensatz unter kohlenstofflimitierten Bedingungen von Matt et al. (2002) führte durch Hauptkomponentenanalyse (PCA) und Korrelationsanalyse zu dem Ergebnis, dass die Hypothese nach einer koordinierten Aminosäurebiosynthese nicht allgemeine Gültigkeit hat. Die PCA identifizierte Glutamin, Glutamat, Aspartat, Glycin, Pheny-lalanin und Threonin als Faktoren, die den Datensätzen ihre charakteristische Eigenschaft und deren Varianz verleihen. Die Korrelationsanalyse zeigte, dass die sehr guten Korrelationen der individuellen Aminosäuren untereinander in reduzierten Stickstoff- und Kohlenstoffbedingungen sich verschlechtern. Das Verhältnis einer einzelnen Aminosäure relativ zu den anderen führte zur Identifizierung einiger Aminosäuren, die individuelle Antworten auf Stickstoff- und/oder Kohlenstoffstatus zeigen, und/oder speziell auf Nitrat, Licht und/oder den E-nergiestatus der Thylakoidmembran. Glutamat beispielsweise verhält sich in den meisten Situationen stabil, Phenylalanin dagegen zeigt in jeder physiologischen Situation eine individuelle Antwort. Die Ergebnisse dieser Arbeit führen zu einer Erweiterung der Hypothese einer koordinierten Synthese der Aminosäuren dahingehend, dass diese nicht generell für alle Aminosäuren angenommen werden kann. Es gibt einige Aminosäuren deren, Anteile sich situationsbedingt anpassen. Die Reduktion des Stickstoffstatus in nitratmangelernährten Tabakwildtyppflanzen führte zu der, nach der „Carbon-Nutrient-Balance“ Hypothese erwarteten Verlagerung der kohlenstoffreichen Phenylpropanoide und des stickstoffreichen Nikotins. Die Erhöhung der Phenylpropanoidgehalte war nicht in der Nitrat akkumulierenden NIA-Transformante zu beobachten und somit konnte Nitrat als regulatorisches Element identifiziert werden. Ein Einfluss der Vorläufermetabolite konnte ausgeschlossen werden, da sowohl nitratmangelernährter Wildtyp als auch die Nitrat akkumulierende NIA-Transformante ähnliche Gehalte dieser aufwiesen. Genexpressionsanalysen über Mikroarray-Hybridisierung und quantitative RT-PCR zeigten, dass Nitrat durch noch nicht geklärte Mechanismen Einfluss auf die Expression einiger Gene nimmt, die dem Phenylpropanoidstoffwechsels zugeordnet sind. Aus der Arbeit hervorgegangene Veröffentlichungen: Christina Fritz, Natalia Palacios-Rojas, Regina Feil und Mark Stitt (2006) Regulation of Secondary Metabolism by the Carbon-Nitrogen Status in Tobacco: Nitrate Inhibits Large Sectors of Phenylpropanoid Metabolism. Plant Journal 46, 533 - 548 Christina Fritz, Petra Matt, Cathrin Müller, Regina Feil und Mark Stitt (2006) Impact of the Carbon-Nitrogen Status on the Amino Acid Profile in Tobacco Source Leaves. Plant, Cell and Environment 29 (11), 2009 - 2111 / It is known that changes in carbon and nitrogen status of a plant lead to parallel rather than reciprocal changes of carbon and nitrogen containing primary metabolites. Based on this finding the influence of carbon and nitrogen status on the amino acid profile as well as on secondary metabolism was investigated in tobacco. Manipulations of the nitrogen status were carried out in two ways: Tobacco wild type plants were cultivated in nitrogen-replete and nitrogen starved conditions; in addition nitrate accumulating transformants with reduced nitrate reductase (NIA) activity were used. The comparison of the nitrate starved wild type and the nitrate accumulating NIA-transformant allows to distinguish processes which were driven by the nitrogen status of a plant or by nitrate itself. Due to the fact that most primary metabolites have diurnal changes the analysis of primary and secondary metabolites were done at six different time points per day in order to identify diurnal processes. Analysis of the absolute levels of individual amino acids under normal nitrogen supply conditions reveals characteristic diurnal patterns for the majority of amino acids with an increase during the day and a decrease during the night. This result indicates that amino acid biosynthesis might be coordinated. However these diurnal patterns are no longer stable in plants with reduced nitrogen status; furthermore absolute levels of individual amino acids differed over a wide range of concentrations. The hypothesis of a coordinated regulation of amino acid metabolism was further tested by combining this dataset with an amino acid dataset produced under carbon limited conditions (Matt et al., 2002) and applying Principal Component Analysis (PCA) and correlation analysis. Glutamine, glutamate, aspartate, glycine, phenylalanine and threonine were responsible for the clear separation of the different genotypes and experimental conditions in the PCA plot. The data from the correlation analysis show that most of the minor amino acids have very good correlations under carbon and nitrogen sufficient conditions. These correlations became weaker with decreasing carbon and nitrogen status of the plants. These results clearly indicate that a coordinated biosynthesis of amino acids is not a general phenomenon. Comparing the levels of each individual amino acid to the total amino acid pool revealed specific answers of a particular amino acid to carbon and/or nitrogen status, to nitrate and/or light and to energy status of the thylakoid membrane. Glutamate for instance is remarkably stable in most of the conditions and phenylalanine shows an individual response in every situation. From these results it was concluded that the hypothesis of a coordinated biosynthesis of amino acids might be true for some amino acids, but clearly needs to be extended because some amino acids adjust their levels in an individual fashion depending on the external conditions. The reduction of nitrogen status of nitrate starved wild type plants leads to a shift from carbon-rich phenylpropanoids to nitrogen-rich nicotine as predicted by the “carbon-nutrient-balance hypothesis”. Increased phenylpropanoids were not observed in nitrate accumulating NIA-transformants. Therefore nitrate could be identified as a regulatory element in phenyl-propanoid metabolism. A regulatory influence of precursors could be excluded since nitrate starved wild type and NIA-transformant had similar levels. Genexpression analysis via microarry hybridisation and quantitative RT-PCR shows that nitrate acts a transcriptional regulator of genes involved in phenylpropanoid metabolism. The elucidation of this regulatory role of nitrate requires further investigation.
3

Deterring Rodent Seed Predation Using Seed-Coating Technologies

Taylor, Justin Blake 11 December 2019 (has links)
With many natural landscapes undergoing restoration efforts, there is a growing need for the optimization of direct seeding practices. Seeds planted on wildlands are often consumed by rodents leading to reduced plant establishment. Coating seeds in rodent aversive products may prevent seed predation. We tested ten seed-coating formulations containing products expected to deter rodents, namely: ghost and cayenne pepper powders; essential oils from bergamot, neem, and pine; methyl-nonyl-ketone, anthraquinone, activated carbon, beta-cyclodextrin and a blank coating containing no rodent deterrents to serve as a control treatment. Each treatment was applied to Pseudoroegneria spicata (bluebunch wheatgrass) seeds. These seeds germinated similarly to uncoated control seeds unless the coating contained methyl-nonyl-ketone which reduced germination. Seeds were offered to Ord's kangaroo rats (Dipodomys ordii) that strongly avoided the treatments in favor of uncoated control seeds. Notably, the blank coating, lacking active ingredients, still elicited 99% avoidance. However, these results indicated behavior when alternative food sources are readily available, a scenario rare in nature. To address this, a second feeding experiment was conducted to observe D. ordii's behavior under calorie-restricted conditions. D. ordii were subjected to a fast period and then offered only one treatment. Under these conditions, many subjects chose to consume coated seeds, but to a lesser degree than subjects offered control seeds. Seeds coated in ghost pepper, neem oil, and activated carbon reduced consumption by 47-50%. Given these lab results, we would expect these seed-coatings to increase the establishment of native seeds following the direct seeding of wildlands by deterring rodent seed-predation.
4

Understanding Plant Secondary Metabolites; Above and Below Ground

Clemensen, Andrea K. 01 August 2018 (has links)
Plants naturally produce primary and secondary metabolites. Primary metabolites are directly involved with plant growth and metabolic function. Plant secondary metabolites (PSM) were once thought of as metabolic waste products, and more recently viewed as toxins to herbivores. However, ongoing research shows that PSM are beneficial to herbivores at low doses, and PSM aid plants by attracting pollinators, recovering from injury, protecting from ultraviolet radiation, increasing drought tolerance, and aid in defense against pathogens, diseases, and herbivores. Plant secondary metabolites also influence soil nutrient cycling, and can increase the sustainability of agroecosystems. Endophyte-infected tall fescue (Festuca arundinacea Schreb.) , which contains ergovaline, and reed canarygrass (Phalaris arundinacea L.), containing gramine, were studied along with the legumes alfalfa (Medicago sativa L.) which contains saponins, and tannin-containing sainfoin (Onobrychis viciifolia Scop.) and birdsfoot trefoil (Lotus corniculatus L.). This dissertation researches (i) how planting configuration (monocultures vs. two-way mixtures) influences PSM and total N in plants, (ii) how cattle grazing forages containing PSM affects soil quality, nutrient cycling, and PSM, and (iii) how cattle manure from different diets, containing different PSM, influences soil nutrient cycling.
5

The application of nanomaterials for the delivery of natural antimicrobials in engineered systems

Chan, Andrea C. January 2013 (has links)
Biofouling is the undesired biofilm formation on surfaces at a liquid interface that interferes with the affected substrate’s function. It is a ubiquitous problem in many engineered systems in industry. Biofouling causes contamination, essential damage to materials, and impedances to crucial industrial processes. These adverse effects lead to health hazards, gross increase in energy consumption, and significant decrease in overall productivity, all of which result in higher operational costs and environmentally destructive consequences. Interest in discovering effective alternatives to conventional antimicrobial agents has gained momentum. Current anti-biofouling strategies have significant disadvantages, such as the generation of toxic by-products, indiscriminate corrosion of surrounding materials and the environment, and promotion of resistance development. Alternative methods of controlling biofouling are in high demand because present-day solutions are far from sustainable. Plant secondary metabolites are promising candidates as novel biocides because they are (i) highly effective in killing microbes while being non-toxic to humans at antimicrobially active concentrations, and (ii) safer and non-damaging to the natural environment. Herein, antimicrobial efficacies of five plant-derived compounds were assessed against various species of planktonic bacteria as well as biofilms at various maturity stages. Allyl isothiocyanate (AIT) and cinnamaldehyde (CNAD) displayed the greatest inhibitory effects against all planktonic species tested. The minimum inhibitory concentration is defined as the lowest concentration of a substance that inhibits visible microbial growth, and the MBC is defined as the lowest concentration at which 99.9% of the population is killed. AIT yielded MICs of 156.25 mg/L and MBCs of 156.25 to 312.5 mg/L, and CNAD yielded MICs of 78.125 to 156.25 mg/L and MBCs of 78.125 to 312.5 mg/L. Furthermore, 312.5 mg/L AIT and 625 mg/L CNAD successfully reduced > 80% of biofilm adhesion as compared to negative controls. AIT and CNAD were therefore further evaluated extensively. Hindered by their volatile nature and immiscibility, plant secondary metabolites typically do not reach their maximum antimicrobial capacity due to low bioavailability. Thus, they would benefit from being protected and delivered in nano-sized carriers. In this study, mesoporous silica nanoparticles (MSNs) were evaluated as carriers for AIT and CNAD delivery. In one, employment of MSNs as carriers doubled the antibacterial efficacy of free form AIT and increased kill rate of free form CNAD by six times. Furthermore, free form AIT caused ~70% of 60 day-old biofilm to detach, whereas AIT-loaded MSNs essentially removed all of the biofilm. As for CNAD, its free form had no significant effect, whereas CNAD-loaded MSNs caused ~80% reduction in biofilm biomass. MSNs were further engineered to incorporate lactose pore caps to achieve specific, on-command delivery. These MSNs were designed to respond to external stimuli intelligently, with gatekeepers that degrade only in the vicinity of certain target bacteria that are able to metabolise lactose. Capped AIT-loaded MSNs reduced bacterial viability by ~85% as compared to the negative control, while capped CNAD-loaded versions reduced viability by ~40%. This stimuli-triggered MSN delivery technology would be more sustainable than current methods because resistance development would be lowered, and the delivery vehicles could be recycled and reused. Herein, the complete AIT- or CNAD-loaded, lactose-capped MSNs delivery complex proved to be an effective and environmentally conscientious system for killing unwanted bacteria.
6

Primates, poison, and cytochrome P450: Evolutionary dynamism of the CYP1-3 gene families within the primate order

Chaney, Morgan Edward 24 April 2023 (has links)
No description available.
7

Impact des métabolites secondaires de plantes sur des bactéries pathogènes de la rhizosphère : existe-t-il un lien entre la résistance sur métaux et la modulation de résistance aux antibiotiques ? / Metabolic adaptation of plants to metal stress : consequences on rhizospheric bacterial communities and the selection of antibiotic resistant populations

Pham, Hoang-Nam 22 May 2017 (has links)
L'objectif de cette thèse est d'évaluer les modifications du métabolisme secondaire des plantes contaminées aux éléments trace métalliques (ETM) et leurs conséquences sur les communautés bactériennes rhizosphériques associées incluant des bactéries présentant des phénotypes de MultiDrug Résistance (MDR). Nous nous sommes focalisés sur deux contextes de sols exposés aux métaux : la phytoremédiation de sites miniers au Vietnam et la reconversion de sols agricoles contaminés par la re-déposition atmosphérique d'activités métallurgiques en France. Nos résultats ont mis en évidence que la contamination par différents types de métaux (dont Cu et Pb principalement) a conduit à une altération de la production des métabolites secondaires des racines, tiges et feuilles de la plante hyperaccumulatrice Pteris vittata et que concernant les racines des tendances similaires dans les changements métaboliques ont pu être observés dans un autre type de contexte de pollution (Zn et Pb plus particulièrement). De même, les profils métaboliques des parties souterraines (racines et rhizomes) de Miscanthus x giganteus ont été modifiés par les concentrations en Pb, Cd et Zn des sols agricoles. Pour les deux plantes examinées des dérivés de l'acide chlorogénique ont été retrouvés en proportions augmentées dans les racines malgré des contextes de nature des sols et de pollutions métalliques très contrastés. Cependant, les dérivés de tanin catéchiques sont spécifiquement trouvés en proportions plus élevées dans les racines de P. vittata sous pression métallique. Ces polyphénols sont connus pour leur capacité à piéger les radicaux libres et leur pouvoir antioxydant et pourraient donc être impliqués dans l'adaptation de ces plantes au stress métallique en contribuant à limiter le stress oxydatif généré par les ETM. Au niveau des parties aériennes, nous n'avons étudié que le changement pour P. vittata et avons mis en évidence une proportion plus élevée de dérivés flavonoïdiques pour les plantes contaminées. Nos résultats de métagénomique nous permettent de conclure également sur un effet des ETM sur la diversité et la richesse spécifique des communautés bactériennes des sols étudiés : une forte contamination en Cu (10 fois la limite autorisée) a diminué la diversité et la richesse bactérienne, alors que pour des niveaux en ETM plus modérés incluant Cu, Pb et Zn, la diversité des communautés bactériennes rhizosphériques semble plus influencée par la plante ou la saison plutôt que par l'effet des ETM. Cet effet sur la composition bactérienne de la rhizosphère de P. vittata se traduit par un enrichissement de certains genres connus comme pathogènes opportunistes de l'homme, notamment Ralstonia, Acinetobacter, Burkholderia et Mycobacterium. En outre, le genre Cupriavidus, connu comme très résistant aux ETM est le seul genre spécifiquement associé à P. vittata qui ait été augmenté au sein de la communauté rhizosphérique pour les deux sites miniers étudiés par rapport aux sols rhizosphériques non pollués. Ce genre pourrait donc être impliqué dans le processus d'adaptation de cette plante au stress métallique. Quant aux communautés rhizosphériques de Miscanthus x giganteus, la sélection de Stenotrophomonas et Pseudomonas dans les sols agricoles contaminés a été observée. Dans le cadre de cette thèse nous avons également mis au point une méthode rapide pour tester l'impact de métabolites végétaux sur des souches pathogènes d'origine clinique et environnementale et également évaluer leur activité inhibitrice de pompes à efflux (IPE) de la famille des RND. Nos données ont ainsi permis de mettre en évidence des activités intéressantes et comparables à celle de l'inhibiteur de pompe à efflux PAßN pour des composés testés qui étaient extraits des racines de Fallopia x bohemica ou des dérivés de ces derniers. / The objective of this thesis is to evaluate the modification of plant secondary metabolism production contaminated with metallic trace elements (MTE) and its consequences on the associated rhizospheric bacterial communities including bacteria presenting MultiDrug Resistant (MDR) phenotypes. We have focused on two contexts of metals exposure: the phytoremediation of mining sites in Vietnam and the reconversion of agricultural soils contaminated by the atmospheric re-deposition of metallurgical activities in France. Our results highlighted that contamination by different types of metals (mainly Cu and Pb) has led to an alteration in the production of secondary metabolites in the roots, stems and leaves of the hyper-accumulating Pteris vittata and for roots, a similar trend in the metabolic changes could be observed in another type of pollution context (Zn and Pb more particularly). Similarly, the metabolic profiles of the underground parts (roots and rhizomes) of Miscanthus x giganteus were modified by the concentrations of Pb, Cd and Zn in agricultural soils. For the two plants examined chlorogenic acid derivatives have been found in increased proportions in the roots despite soil type and pollution context were highly contrasted. However, catechic tannin derivatives are specifically found in higher proportions in the roots of P. vittata under metal pressure. These polyphenols are known for their ability to scavenge free radicals and their antioxidant properties and thus could be involved in the adaptation of these plants to metallic stress by helping to limit the oxidative stress generated by MTE. At the level of the aerial parts, we studied only the change for P. vittata and evidenced higher proportions of flavonoid derivatives for contaminated plants. Our metagenomic results allow us to conclude also on the effect of MTE on the diversity and the specific richness of the bacterial communities of the studied soils: a high contamination of Cu (10 times the allowed limit) decreased dramatically bacterial richness and diversity, while for more moderate MTE levels including Cu Pb and Zn, the diversity of rhizosphere bacterial communities was more explained by plant or season effect rather than an effect of MTE. This effect on P.vittata rhizosphere bacterial composition is reflected by an enrichment in genera known as opportunistic human pathogens, including Ralstonia, Acinetobacter, Burkholderia and Mycobacterium. In addition, Cupriavidus, known as a highly resistant genus, is the only P. vittata specifically associated genus found in increased proportions at both mining sites compared to non-contaminated rhizosphere soils. This genus could then be involved in the adaptation process of this plant with metal stress. As for the rhizospheric communities of Miscanthus x giganteus, the selection of Stenotrophomonas and Pseudomonas in agricultural soils contaminated with MTE was observed. As a part of this thesis, we have also developed a rapid method for testing the impact of plant metabolites on pathogenic strains of clinical and environmental origin and their efflux pump inhibition (EPI) activity of RND family. Our data thus showed interesting and notable EPI activities comparable to that of the efflux pump inhibitor PAßN for tested compounds issued from Fallopia x bohemica roots or for their derivatives.
8

Milkweeds, monarchs, and their microbes: understanding how plant species influences community composition and functional potential

Thorsten E Hansen (17583522) 10 December 2023 (has links)
<p dir="ltr">Plant secondary metabolites (PSMs) are specialized compounds produced in response to a range of insect herbivores and microbes, making them important in shaping tri-trophic interactions. However, despite being well-studied in the context of plant-insect coevolution, it is unclear how PSMs impact microbial communities associated with plants and the insect herbivores that feed on them. The overarching goal of this dissertation was to better understand how variation in plant defensive responses, particularly expression of PSMs, influences the composition and functional potential of microbial communities associated with plant tissues (roots and leaves) and insect herbivores. Monarchs (<i>Danaus plexippus</i>) and their milkweed hosts (<i>Asclepias spp.)</i> are well-studied for mechanisms of plant defense and insect counter defense, but little is known about the role of associated microbial communities in this iconic system. To address this knowledge gap, a combination of metabarcoding and metagenomics was used to characterize the taxonomic composition and functional gene profiles of bacterial communities associated with plant tissues (i.e., phyllosphere and rhizosphere) and monarch caterpillars fed on multiple milkweed species (<i>A. curassavica</i>, <i>A. syriaca</i>, and <i>A. tuberosa</i>). Findings show the composition of phyllosphere, rhizosphere, and monarch microbiomes vary across milkweed species in terms of diversity and relative abundance of bacterial taxa. Furthermore, phyllosphere and rhizosphere microbiomes were shown to have distinct functional gene profiles and presence of potential PSM metabolism genes that also varied across milkweed species. Rhizosphere microbiomes had a greater overall capacity for PSM metabolism compared to the phyllosphere, having more genes, and associated metabolic pathways involved in degradation or detoxification of known classes of PSMs. However, plant associated microbiomes were not generally affected by monarch feeding, evidenced by few changes in taxonomic composition or abundance of genes predicted to be involved in PSM metabolism. Interestingly, monarch microbiomes shared >90% of their taxa with their host plants, but there was little evidence of PSM metabolism genes present in functional gene profiles. Overall, this dissertation lays the foundation for understanding how PSMs shape all the microbial communities associated with monarchs and their milkweed hosts. Findings suggest plant defensive responses affect the assembly, functional potential and ultimately the evolution of plant and insect microbiomes.</p>
9

TARGET-DIRECTED BIOSYNTHETIC EVOLUTION: REDIRECTING PLANT EVOLUTION TO GENOMICALLY OPTIMIZE A PLANT’S PHARMACOLOGICAL PROFILE

Brown, Dustin Paul 01 January 2015 (has links)
The dissertation describes a novel method for plant drug discovery based on mutation and selection of plant cells. Despite the industry focus on chemical synthesis, plants remain a source of potent and complex bioactive metabolites. Many of these have evolved as defensive compounds targeted on key proteins in the CNS of herbivorous insects, for example the insect dopamine transporter (DAT). Because of homology with the human DAT protein some of these metabolites have high abuse potential, but others may be valuable in treating drug dependence. This dissertation redirects the evolution of a native Lobelia species toward metabolites with greater activity at this therapeutic target, i.e. the human DAT. This was achieved by expressing the human DAT protein in transgenic plant cells and selecting gain-of-function mutants for survival on medium containing a neurotoxin that is accumulated by the human DAT. This created a sub-population of mutants with increased DAT inhibitory activity. Some of the active metabolites in these mutants are novel (i.e. not detectable in wild-type cells). Others are cytoprotective, and also protect DAergic neurons against the neurotoxin. This provides proof-of-concept for a novel plant drug discovery platform, which is applicable to many different therapeutic target proteins and plant species.

Page generated in 0.1188 seconds