• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 15
  • 15
  • 13
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diversidade genética e potencial biotecnológico de fungos endofíticos de manguezais do estado de São Paulo / Genetic diversity and biotecnological potential of endophytic fungi from mangroves at São Paulo State

Sebastianes, Fernanda Luiza de Souza 24 August 2010 (has links)
Manguezais são ecossistemas localizados na confluência de terra e mar, característicos de áreas tropicais e subtropicais, cobrindo cerca de 18,1 milhões de hectares do planeta. A grande biodiversidade encontrada nestes ambientes ressalta a importância da busca por conhecimentos à seu respeito, como o estudo sobre novos princípios ativos derivados de microrganismos endofíticos presentes nas plantas de manguezais. Desta forma, o propósito do presente trabalho foi determinar a diversidade genética da comunidade de fungos endofíticos presentes em folhas e ramos das principais espécies arbóreas de manguezais de Cananéia e Bertioga (situados no estado de São Paulo, Brasil), e avaliar o potencial biotecnológico destes fungos em relação à produção de antibióticos contra os patógenos humanos Staphylococcus aureus e Escherichia coli, e contra o fitopatógeno Xanthomonas axonopodis citri . Os resultados da primeira etapa do trabalho, que envolveu o isolamento e a caracterização de fungos endofíticos filamentosos, mostraram que a comunidade fúngica associada às plantas de manguezais é formada por pelo menos 35 gêneros diferentes, sendo que os gêneros mais frequentes foram Diaporthe, Fusarium, Trichoderma, Colletotrichum e Xylaria. Grande parte dos gêneros encontrados neste trabalho é de fungos de solo, indicando que eles estão adaptados às condições adversas dos manguezais. Os resultados mostraram que, dentre as linhagens produtoras de antibiótico, 29,41% pertencem ao gênero Diaporthe, o qual apresentou maior frequência na comunidade fúngica estudada. Após a avaliação de 344 fungos quanto ao potencial de atividade antimicrobiana, foi selecionada a linhagem 41.1(1) de D. phaseolorum, um endófito de folha de Laguncularia racemosa, para elucidação da estrutura química do seu antibiótico purificado. Por meio das técnicas de Ressonância Magnética Nuclear e de Espectrometria de Massas o antibiótico foi identificado como ácido 3-hidroxipropiônico o qual apresentou atividade frente aos patógenos humanos Staphylococcus aureus e Salmonella tiphy. A estrutura química deste antibiótico foi modificada por meio de reação química de esterificação de Fischer-Speier para avaliar a relação da estrutura química e atividade biológica deste composto. O produto final da reação química de esterificação do antibiótico ácido 3-hidroxipropiônico não apresentou atividade antimicrobiana, indicando que o grupo hidroxila removido na reação é importante na atividade farmacológica desse composto. Além disso, a linhagem 41.1(1) de D. phaseolorum foi transformada geneticamente pelo sistema Agrobacterium tumefaciens, visando a obtenção de transformantes deficientes para produção de antibiótico e, com isso, a identificação de genes relacionados com a via de biossíntese do antibiótico ácido 3-hidroxipropiônico. A análise das sequências que flanqueiam o T-DNA, obtidas por TAIL-PCR, mostraram que os genes interrompidos nos transformantes estão relacionados com proteínas de domínios conservados envolvidos com diferentes funções como: translação de proteínas, homeostase do íon orgânico Mg2+, transporte intracelular, migração, adesão e proliferação celular e outras funções celulares. A caracterização da biblioteca de agrotransformantes constitui uma ferramenta importante para o estudo da biologia molecular de fungos que produzem compostos bioativos por meio do seu metabolismo secundário. / Mangroves are ecosystems situated beyond land and sea. They are more frequently found in tropical and subtropical areas englobing around 18.1 millions of hectares in the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from endophytic fungi that inhabit these ecosystems. Therefore, the goal of this study was to determine the genetic diversity of the fungal endophytic community found in leaves and branches of the main arboreal species from mangrove of Cananéia and Bertioga (situated in São Paulo state, Brazil), and to evaluate the biotechnological potential of these fungi concerning the production of antibiotics against the human pathogens Staphylococcus aureus and Escherichia coli, and against the phytopathogen Xanthomonas axonopodis citri . The results of the first part of this work, including the isolation and characterization of the filamentous endophytic fungi, showed that the mangrove fungal community is made up of at least 35 different genera, from which the most frequent are Diaporthe, Fusarium, Trichoderma, Colletotrichum and Xylaria. Most of the fungal genera found in this study come from soil, which suggests that they are adapted to the adverse conditions of mangroves. The results show that among the antibiotic-produncing strains, 29.41% belong to the genus Diaporthe, which was the most frequently found in the studied fungal community. After the analysis of 344 fungi regarding the antibiotic activity potential, a strain of D. phaseolorum (a leaf endophyte of Laguncularia racemosa) was selected to unveil the chemical structure of their purified antibiotic. The nuclear magnetic resonance and the mass spectrometry techniques allowed the identification of the antibiotic as 3-hidroxypropionic acid, which displayed activity against the pathogens Staphylococcus aureus and Salmonella tiphy. The chemical structure of this antibiotic was modifyed by the chemical reaction of Fischer-Speier sterification in order to evaluate the chemical structure and biological activity of this compound. The final product of the chemical reaction of 3-hidroxipropionic acid sterification had no antibiotic activity, which suggests that the hydroxil group removed from the reaction is important to the pharmachological activity of this compound. Additionally, the strain 41.1(1) of D. phaseolorum was genetically transformed by the Agrobacterium tumefaciens system, in order to generate antibioticdeficient transformants, which would help to identify genes related to the biosynthesis pathway of the 3- hidroxypropionic acid antibiotic. The TAIL-PCR analysis revealed that the interrupted genes in the tranformants are related to proteins from conserved domains involved in different functions such as protein translation, Mg2+ ion homeostasis, intracellular transport, migration, adhesion and cellular proliferation and other cellular functions. The characterization of the agrotransformants library is an important tool to unveiling the molecular biology of fungi that produce bioactive compounds by the secondary metabolism.
12

Diversidade genética e potencial biotecnológico de fungos endofíticos de manguezais do estado de São Paulo / Genetic diversity and biotecnological potential of endophytic fungi from mangroves at São Paulo State

Fernanda Luiza de Souza Sebastianes 24 August 2010 (has links)
Manguezais são ecossistemas localizados na confluência de terra e mar, característicos de áreas tropicais e subtropicais, cobrindo cerca de 18,1 milhões de hectares do planeta. A grande biodiversidade encontrada nestes ambientes ressalta a importância da busca por conhecimentos à seu respeito, como o estudo sobre novos princípios ativos derivados de microrganismos endofíticos presentes nas plantas de manguezais. Desta forma, o propósito do presente trabalho foi determinar a diversidade genética da comunidade de fungos endofíticos presentes em folhas e ramos das principais espécies arbóreas de manguezais de Cananéia e Bertioga (situados no estado de São Paulo, Brasil), e avaliar o potencial biotecnológico destes fungos em relação à produção de antibióticos contra os patógenos humanos Staphylococcus aureus e Escherichia coli, e contra o fitopatógeno Xanthomonas axonopodis citri . Os resultados da primeira etapa do trabalho, que envolveu o isolamento e a caracterização de fungos endofíticos filamentosos, mostraram que a comunidade fúngica associada às plantas de manguezais é formada por pelo menos 35 gêneros diferentes, sendo que os gêneros mais frequentes foram Diaporthe, Fusarium, Trichoderma, Colletotrichum e Xylaria. Grande parte dos gêneros encontrados neste trabalho é de fungos de solo, indicando que eles estão adaptados às condições adversas dos manguezais. Os resultados mostraram que, dentre as linhagens produtoras de antibiótico, 29,41% pertencem ao gênero Diaporthe, o qual apresentou maior frequência na comunidade fúngica estudada. Após a avaliação de 344 fungos quanto ao potencial de atividade antimicrobiana, foi selecionada a linhagem 41.1(1) de D. phaseolorum, um endófito de folha de Laguncularia racemosa, para elucidação da estrutura química do seu antibiótico purificado. Por meio das técnicas de Ressonância Magnética Nuclear e de Espectrometria de Massas o antibiótico foi identificado como ácido 3-hidroxipropiônico o qual apresentou atividade frente aos patógenos humanos Staphylococcus aureus e Salmonella tiphy. A estrutura química deste antibiótico foi modificada por meio de reação química de esterificação de Fischer-Speier para avaliar a relação da estrutura química e atividade biológica deste composto. O produto final da reação química de esterificação do antibiótico ácido 3-hidroxipropiônico não apresentou atividade antimicrobiana, indicando que o grupo hidroxila removido na reação é importante na atividade farmacológica desse composto. Além disso, a linhagem 41.1(1) de D. phaseolorum foi transformada geneticamente pelo sistema Agrobacterium tumefaciens, visando a obtenção de transformantes deficientes para produção de antibiótico e, com isso, a identificação de genes relacionados com a via de biossíntese do antibiótico ácido 3-hidroxipropiônico. A análise das sequências que flanqueiam o T-DNA, obtidas por TAIL-PCR, mostraram que os genes interrompidos nos transformantes estão relacionados com proteínas de domínios conservados envolvidos com diferentes funções como: translação de proteínas, homeostase do íon orgânico Mg2+, transporte intracelular, migração, adesão e proliferação celular e outras funções celulares. A caracterização da biblioteca de agrotransformantes constitui uma ferramenta importante para o estudo da biologia molecular de fungos que produzem compostos bioativos por meio do seu metabolismo secundário. / Mangroves are ecosystems situated beyond land and sea. They are more frequently found in tropical and subtropical areas englobing around 18.1 millions of hectares in the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from endophytic fungi that inhabit these ecosystems. Therefore, the goal of this study was to determine the genetic diversity of the fungal endophytic community found in leaves and branches of the main arboreal species from mangrove of Cananéia and Bertioga (situated in São Paulo state, Brazil), and to evaluate the biotechnological potential of these fungi concerning the production of antibiotics against the human pathogens Staphylococcus aureus and Escherichia coli, and against the phytopathogen Xanthomonas axonopodis citri . The results of the first part of this work, including the isolation and characterization of the filamentous endophytic fungi, showed that the mangrove fungal community is made up of at least 35 different genera, from which the most frequent are Diaporthe, Fusarium, Trichoderma, Colletotrichum and Xylaria. Most of the fungal genera found in this study come from soil, which suggests that they are adapted to the adverse conditions of mangroves. The results show that among the antibiotic-produncing strains, 29.41% belong to the genus Diaporthe, which was the most frequently found in the studied fungal community. After the analysis of 344 fungi regarding the antibiotic activity potential, a strain of D. phaseolorum (a leaf endophyte of Laguncularia racemosa) was selected to unveil the chemical structure of their purified antibiotic. The nuclear magnetic resonance and the mass spectrometry techniques allowed the identification of the antibiotic as 3-hidroxypropionic acid, which displayed activity against the pathogens Staphylococcus aureus and Salmonella tiphy. The chemical structure of this antibiotic was modifyed by the chemical reaction of Fischer-Speier sterification in order to evaluate the chemical structure and biological activity of this compound. The final product of the chemical reaction of 3-hidroxipropionic acid sterification had no antibiotic activity, which suggests that the hydroxil group removed from the reaction is important to the pharmachological activity of this compound. Additionally, the strain 41.1(1) of D. phaseolorum was genetically transformed by the Agrobacterium tumefaciens system, in order to generate antibioticdeficient transformants, which would help to identify genes related to the biosynthesis pathway of the 3- hidroxypropionic acid antibiotic. The TAIL-PCR analysis revealed that the interrupted genes in the tranformants are related to proteins from conserved domains involved in different functions such as protein translation, Mg2+ ion homeostasis, intracellular transport, migration, adhesion and cellular proliferation and other cellular functions. The characterization of the agrotransformants library is an important tool to unveiling the molecular biology of fungi that produce bioactive compounds by the secondary metabolism.
13

Glut4 translocation augmentation effects of medicinal plants traditionally used for the management of type II diabetes mellitus

Beseni, Brian Kudakwashe January 2017 (has links)
Thesis (M. Sc. (Biochemistry)) --University of Limpopo, 2017 / Diabetes mellitus is a chronic metabolic disorder characterised by perpetual hyperglycaemia. Various oral pharmacological theraputic management strategies currently exist but are too expensive and having a host of undesirable side effects. Therefore people resort to the use of traditional medicinal plants as they offer a cost effective and readily available health care avenue. Despite the wide-spread use of traditional medicinal plants, several worrisome concerns about their effectiveness, clinical modes of action and safety have been raised. Leaves of five selected plants (Toona celliata, Seriphium plumosum, Schkuhria pinnata, Olea africana, Opuntia ficus-indica) were collected from Mankweng area, Capricon Local Municipality, Limpopo province, South Africa. Ground plant materials were exhaustively extracted by maceration in methanol, acetone or hexane. The presence of different plant secondary metabolites in the crude extracts was determined using various standard chemical tests and thin layer chromatography (TLC). A myriad of compounds which represented various secondary plant metabolites groups were observed on the TLC plates and were best resolved in the non-polar (BEA) and intermediate (CEF) mobile phases. The total phenolic content and total flavonoids of the different extracts were determined spectrophotometrically using the Folin-Ciocalteu`s phenol reagent method and Aluminium chloride colorimetric assay respectively. The plants contained comparatively higher amounts of total phenolic compounds as compared to the flavonoids. The antiglycation activity of the plant extracts were determined using the bovine serum albumin assay. The acetone extract of Seriphium plumosum (SPlA) exhibited the most glycation inhibitory activity among all the examined extracts, as it resulted in 2,22% glycation. The antioxidant potential of each of the different extracts was quantitatively determined spectrophotometrically using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric ion reducing power assay. The methanol extract of Seriphium plumosum showed the best antioxidant activity among all the extracts in this study. It exhibited the lowest EC50 values of 0.72 mg/ml and 2.31 mg/ml for the DPPH scavenging activity and the ferric reducing power assay respectively. The cytotoxicity profiles of the different plant extracts on C2C12 cell line were determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium xiii bromide (MTT) assay. It was concluded that since the all the extracts investigated had CC50 values greater than 50 μg/ml they were generally non-toxic. The amount of glucose taken up by differentiated C2C12 cells was quantified using the glucose uptake assay. Treatment of the C2C12 cells with the hexane extract of Seriphium plumosum resulted in the best glucose utilisation effect of 35,77% which was higher than that of insulin which was 26,06% after 6 hours. The translocation assay was used to determine the effect of the plant extract on GLUT4 translocation while the expression of various mitogen activated protein kinases in the cells was determined using the human MAPK profiler assay. It was established that treatment with Seriphium plumosum hexane extract resulted in increased GLUT4 translocation from the intracellular vesicular stores to the cell surface membrane. The increase in GLUT4 translocation may have resulted from the upregulation of expression of phosphorylated Akt-1, Akt-2, GSK3β, ERK1, ERK2 p70S kinase and MKK3 under the influence of Seriphium plumosum hexane extract. The study documents a probable insulin-mimetic activity of the hexane extract of Seriphium plumosum. This activity may be responsible for its hypoglycaemic capability and may occur via the augmentation of proximal mitogen activated protein kinases involved in the GLUT4 translocation pathway. Further investigations need to be conducted to ascertain this novel finding which may help provide a cost-effective and readily available antidiabetic therapeutic agent. / National Research Foundation (NRF)
14

Evaluation of biological activities of nine anti-inflammatory medicinal plants and characterization of antimicrobial compounds from Pomaria sandersonii and Alepidea amatymbica

Muleya, Eddwina January 2013 (has links)
D. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences)|, Vaal University of Technology. / Medicinal plants provide valuable alternative sources of drugs and drug discovery because many have been used in traditional practices for centuries to manage or treat various forms of ailments. The aim of this study was to evaluate the biological activities of nine medicinal plants used by Zulus in Mabandla village, KwaZulu-Natal province, South Africa to treat inflammation and to isolate selected active compounds against studied pathogens from Alepidea amatymbica and Pomaria sandersonii. The plants were selected on the basis of an ethnobotanical survey based on questionnaire response and verbal interviews that were conducted in Mabandla village with the local traditional healers and herbalists. The isolation of compounds from Alepidea amatymbica and Pomaria sandersonii was based on the bioassay based study which was carried out in this study. Bioassay guided study involving in vitro anti-inflammatory measurement using soya bean derived 15 Lipoxygenase, free radical scavenging capacity against the ABTS●+ radical cation and DPPH● radicals; antimicrobial and bioautography assays against Staphylococcus aureus, ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 29212, Escherichia coli, ATCC25922, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus were carried out using the plants extracts, fractions and pure compounds. Isolation of compounds displaying biological activity was carried out by using open column chromatography and preparative thin layer chromatography (PTLC). The compounds were characterised by use of Nuclear Magnetic resonance, (NMR) and Mass Spectrometry (MS). The DPPH sprayed TLC showed that all the nine plants contained antioxidants. Most of which were contained in polar fractions of acetone and methanol. Results of the assays displayed a range of biological activities comparable to the positive controls used for each assay. DPPH● scavenging displayed EC50 values ranging between 1.008 and 467 Kg/ml. The highest activity was observed with the methanol fraction of Berkheya setifera with an EC50 value of 1.008 Kg/ml followed by the crude extract of Gunnera perpensa with EC50 value of 1.069 Kg/ml. Carissa bispinosa hexane fraction had the lowest activity of 467.7 Kg/ml. The Pomaria sandersonii DCM extract had the highest ABTS●+ radical scavenging activity by Pomaria sandersonii DCM extract, (1.273 Kg/ml) for the ethyl acetate, (5.973 Kg/ml) while the hexane fraction from Eucomis autumnalis had the lowest activity (929.4 Kg/ml). The activity of Pomaria sandersonii extracts and fractions demonstrated that the plant contains antioxidants that react with both DPPH and ABTS radicals although higher activities were shown by ABTS as displayed by the lower EC50 values. All the crude fractions and extracts had high to moderate antibacterial activities (20-625 Kg/ml) and anti-fungal activities (20-2500 Kg /ml). Pomaria sandersonii crude and fractions had the highest antimicrobial activity compared to other plants. Some MIC values for P. sandersonii dichloromethane and ethyl acetate fractions (80 Kg/ml in each case) compared well with gentamycin (4 Kg/ml) since they showed same values against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudonomus aeruginosa. The dichloromethane, acetone and methanol fractions were also active (20 Kg/ml) against both Candida albicans and Aspergillus fumigatus. Inhibition of pathogen growth demonstrated by the polar fractions of the studied plants suggested that some of the active compounds would be soluble in water. A total of seven compounds were isolated from Alepidea amatymbica and Pomaria sandersonii. We propose three were new compounds after considering literature search involving closely related research to this investigation. These were two diterpenes from Alepidea amatymbica, namely, 14-acetoxo-12-oxokaur-16-en-19-oic acid labelled as 0657 and 16-hydroxy-kaur-6-en-19-oic acid given the label 06-2 in this study. The third suspected new compound is the chalcone dimer, which is referred to as EM86 in this study from Pomaria sandersonii. EM80-2 was obtained as a mixture of the cis and trans of 2’, 4, 4,’-trihydroxychalcone or 1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one, from Pomaria sandersonii. The three diterpenes, 14-acetoxokaur-16-en-19-oic acid (0652), 13-hydroxy-16-kauren-19-oic acid (06B) and 14-oxokaur-16-en-19-oic acid (06431) were isolated from Alepidea amatymbica for the first time. Isolated compounds were further tested as individual compounds and results showed that 16-hydroxy-kaur-6-en-19-oic acid (06-2) had weak activity against tested bacteria and fungi with the MIC: Staphylococcus aureus (320 Kg/ml) and Candida albicans, (320 Kg/ml). On the other hand 13-hydroxy-kaur-16-en-19-oic acid (06B) was more active against, Staphylococcus aureus (160 Kg/ml) and Aspergillus fumigatus (40 Kg/ml). The yellow compound that was isolated from Pomaria sandersonii, 1-(2, 4-ihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one was antimicrobial with the following MICs: Candida albicans: 80 Kg/ml; Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus: 160 Kg/ml and Aspergillus fumigatus: 625 Kg/ml. There were two mixtures referred to as EM 49 and EM 77 from Pomaria sandersonii which were difficult to purify but had anti-microbial inhibitory activities worth reporting. EM49 had MIC against Candida albicans of: 160μg/ml; Pseudomonas aeruginosa: 320 Kg/ml, Escherichia coli: 80μg/ml, Enterococcus faecalis 80μg/ml, and Staphylococcus aureus: 80μg/ml and Aspergillus fumigatus: 320μg/ml. EM 77 had MIC against Escherichia coli: 80 Kg/ml and Cryptococcus neoformans: 80μg/ml. Further work on their purification need to be done since in this research we are just reporting on their high MIC activities. The medicinal plants used to treat inflammation under different disease conditions in the Zulu community of Mabandla village, Kwa-Zulu Natal, South Africa have some relevant biological activities. The various antimicrobial, antioxidant and anti-inflammatory activities support the validity of their healing capacities that the traditional healers of the community claim to possess. Although there is evidence of good antimicrobial, antioxidant and anti-inflammatory activities by the crude extracts, the high levels of sucrose in P. prunelloides and glucose in G. perpensa should be borne in mind when using their decoctions in traditional medicine particularly by diabetic patients. In vitro results for the antioxidant, antinflammtory and antimicrobial activities carried out in this investigation illustrate that the plants can be a source of treatment and management for inflammation related conditions. These therefore justify their use in Zulu traditional medicine. However, in vivo assays should be carried out in order to completely validate claims by the traditional healers that they treat inflammation related conditions. / Vaal University of Technology
15

Isolation of Pelargonium alchemilliodes L L'Her active compounds and their effects on bacterial growth and keratinocytes in vitro

Makanyane, Madikoloho Daniel 07 1900 (has links)
M. Tech. (Department of Chemistry and Biotechnology, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Context: Pelargonium alchemilliodes L L' Her is an evergreen shrub, cultivated principally for the medicinal essence and decoction in Southern Africa for the treatment of skin problems, and wounds. Objective: the aim of the study was to optimize the extraction of phenolics and flavonoids from P. graveolens by response surface methodology with particular attention on the proliferative and cytotoxic effects on human keratinocytes, as well as the antioxidant and antibacterial activities and also to isolate active compounds. Materials and Methods: The optimization was achieved by Box-Behnken design. Extract, metabolite yields, and minimal inhibitory concentrations (MIC) were determined by gravimetric, spectrophotometric, and microdilution methods, respectively. The antiradical potentials were evaluated using the phosphomolybdate. 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and lipid peroxidation assays, the diterpenoids were isolated and purified using open column chromatography, PTLC, and characterized with FTIR, NMR. The kinetics of the lipid protective activity was studied and fitted into models. The proliferative and cytotoxic effects were evaluated using the CellTiter® Blue cell viability and lactate dehydrogenase assay. Results: The regression coefficient r2 ≥ 0.9775 indicated a close correlation between actual and predicted values of the responses. The ideal parameter for the extraction of phenolics and flavonoids by macerations was determined as an extraction time: 9.63-12.01 h, material mass: 2.62-3.00 g, agitation speed: 143.11-197.11 rpm, and solvent volume: 68.06-69.87 mL. The optimal extractable acetone and methanol crude, flavonoids, and phenolic are (28.87±2.15%, 24.11±1.15%), (7.11±1.03 mg QE/g, 5.98±0.87 mg QE/g) and (58.08±0.88 mg GAE/g, 55.91±1.15 mg GAE/g), respectively. The detected different chemical groups of polyphenolic compounds such as alkaloids, saponins , sterols, terpenoids, flavonoids, tannins, phenols and cardiac glycosides from methanol and acetone extracts were in correlation with optimized yields. Two triterpenoids compounds 1-hydroxy-30-norlanosta-6, 8-diene and 1 2,3,4a,8,9,10,10a-octahydro-2-(2-hydroxypent-4-enyl)-4a-vinyl-1H-benzo[c]chromen-6(10bH)-one were isolated form methanol extracts. The main components of essential oils were citronellal (5.99%), citranellol (26.2%), geraniol (8.56%), citronellyl butyrate (20.3%), trans-farnesol (9.53%) and they were characterized by high amounts of oxygenated hydrocarbons (67.6%), followed by sesquterpene hydrocarbons and oxygenated sesquiterpene (9.32%) and the least being mornoterpene hydrocarbons (5.20%). Total antioxidant capacity and reducing power were comparable to standard gallic acid, while the antiradical activity has IC50 value of 0.18±0.03-8.98±0.15 mg/mL. Further, the lipid protective revealed a dose-dependent activity fitting into a pseudo-second-order kinetic model. MIC value of 1.56 mg/mL for extracts was registered against Staphylococcus aureus and salmonella typhi comparable to chloramphenicol. There was a significant (P < 0.05) increase in cell proliferation and viability when the extract was administered at concentrations of ≤50 μg/mL. However, at ≥100 μg/mL concentrations at ≤ 1000 μg/mL for essential oil exhibited a significnt cytotoxicity in comparison to the untreated cell. Conclusion: These biological activities are confirmation of the phytomedicinal application and possible source of pharmaceutical compounds. However, administration of the decoction should take into cognizance the antiproliferative effect at doses ≥100 μg/mL as well as the potential to induce and maintain keratinocyte proliferation at low concentration with an eye on the antiproliferative effect at concentrations ≥100 μg/mL, except the P. Alchemilliodes essential oils at ≤ 1000 μg/mL.

Page generated in 0.0575 seconds