• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 21
  • 3
  • Tagged with
  • 66
  • 66
  • 28
  • 21
  • 20
  • 19
  • 16
  • 12
  • 12
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Détection de matériaux énergétiques dans les eaux naturelles souterraines par spectroscopie de résonance des plasmons de surface portable

Granger, Genevieve 03 1900 (has links)
Au cours des dernières années, les matériaux énergétiques, tels que le 2,4,6-trinitrotoluène (TNT) et le 1,3,5-trinitro perhydro-1,3,5-triazine (RDX), ont été utilisés lors des activités d’entrainement militaire, ayant un impact potentiel sur l’environnement, les bases militaires, la population environnante, la faune et la flore. Sur les champs de tir, les sols à proximité des cibles et autour des positions de tir nécessitent une surveillance particulière, puisqu’il est possible de trouver une importante quantité de résidus d’explosif qui peuvent être transportés vers les eaux de surface et des eaux souterraines avec les précipitations. Toutefois, la procédure actuelle pour détecter des matériaux énergétiques dans l'eau naturelle est complexe, longue, nécessite un personnel hautement spécialisé et augmente le risque de contamination croisée. Par conséquent, il est difficile d'assurer un contrôle rapide et continu des contaminants. En fait, l'objectif des travaux présentés dans ce mémoire est de développer une technique pour identifier et quantifier les explosifs et leurs produits de dégradation dans les eaux naturelles. En outre, ce test doit être in situ, en continu, peu coûteux et rapide. La résonance des plasmons de surface (SPR) a été donc utilisée pour quantifier les matériaux énergétiques. Une matrice de bis-aniline réticulée avec des nanoparticules d’or (AuNPs) est utilisée en tant que polymère à empreinte moléculaire (MIP) sur le film d'or pour capturer sélectivement le composé d’intérêt. L'association de la molécule d’intérêt, tel que le TNT ou RDX, au MIP par interactions π-donneur-accepteur permet la détection d'explosifs suite aux changements d’indice de réfraction sur la sonde. Le couplage entre les plasmons des AuNPs et de la couche d'or peut également augmenter les signaux SPR. Le test optimisé a ensuite été utilisé sur une base militaire canadienne. L'utilisation de cet essai à base de MIP fournit un outil pour l'extraction et la pré-concentration de TNT ou RDX à la surface d’une sonde SPR et permet leur détection en continu de faibles concentrations dans les eaux naturelles. / Over the last few years, energetic materials such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) have been used and show a probable environmental impact on military bases, the surrounding population, fauna and flora, caused by military training involving munitions. On shooting ranges, soils near the firing positions and around targets require special monitoring, since the quantities of explosives residues found can be significant, and these compounds can be transported to surface water and groundwater by precipitation. However, the current procedure to detect energetic materials in natural water is complex, long and poorly adapted to. These operations require highly specialized personnel and increase the risk of cross contamination. Therefore, it is difficult to ensure a fast and continuous monitoring of the contaminants. Here, the objective is to develop a technique for identifying and quantifying explosives and their degradation products in natural water. Also, this test has to be in-situ, inexpensive and fast. Surface plasmon resonance (SPR) has been proposed to probe energetic materials. A bis-aniline-cross-linked gold nanoparticles (AuNPs) matrix is used as a molecular imprinted polymer (MIP) on gold film to selectively capture the target compound. The association of the target such as TNT or RDX to the MIP with π-donor-acceptor interactions have allow the detection of explosives by following SPR refractive changes. Plasmon coupling effects between the AuNPs and the gold film could also increase the SPR signals. The optimal sensor was then used on site to detect RDX in underground water of a Canadian military base. The utilisation of MIP based assay will provide a tool for the extraction and pre-concentration of TNT or RDX on the detector’s surface and will allow the detection of lower concentrations in natural water.
62

Cage de résonance à base de films minces transparents et conducteurs de nanotubes de carbone

Dionne, Éric R. January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
63

Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals

Sheremet, E., Milekhin, A. G., Rodriguez, R. D., Weiss, T., Nesterov, M., Rodyakina, E. E., Gordan, O. D., Sveshnikova, L. L., Duda, T. A., Gridchin, V. A., Dzhagan, V. M., Hietschold, M., Zahn, D. R. T. 27 February 2015 (has links)
Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro-ellipsometry, and compared to numerical simulations showing good qualitative agreement. The monolayer of CdSe QDs was deposited by the Langmuir–Blodgett-based technique on the SERS substrates. By tuning the excitation energy close to the band gap of the CdSe QDs and to the LSPR energy, resonant SERS by longitudinal optical (LO) phonons of CdSe QDs was realized. A SERS enhancement factor of 2 × 10<sup>3</sup> was achieved. This allowed the detection of higher order LO modes of CdSe QDs, evidencing the high crystalline quality of QDs. The dependence of LO phonon mode intensity on the size of Au nanoclusters reveals a resonant character, suggesting that the electromagnetic mechanism of the SERS enhancement is dominant. Finally, the resonant TERS spectrum from CdSe QDs was obtained using electrochemically etched gold tips providing an enhancement on the order of 10<sup>4</sup>. This is an important step towards the detection of the phonon spectrum from a single QD. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
64

Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surface

Delhaye, Caroline 17 December 2009 (has links)
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal. / This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel.
65

Intégration d’une méthode d’actuation électrocinétique sur biocapteur plasmonique / Integrating an electrokinetic actuation method on a plasmonic biosensor

Avenas, Quentin 20 December 2018 (has links)
Cette thèse porte sur le développement d’un capteur plasmonique intégrant une fonction d’actuation des objets visés. L’objectif est de passer outre la limite de diffusion rencontrée à basse concentration en piégeant les particules sur la surface de détection. La stratégie adoptée est de structurer le film d’or servant à la détection de manière à pouvoir l’utiliser pour mettre en mouvement le fluide et les molécules par le biais de champs électriques. Le transfert de masse est réalisé par diélectrophorèse et électroosmose, deux effets électrocinétiques mis en oeuvre par des électrodes servant à la fois d’actuateur et de capteur plasmonique. Un état de l’art exhaustif et des simulations multiphysiques ont permis de concevoir un prototype de capteur intégré constitué d’électrodes interdigitées en or permettant la détection plasmonique. Le dispositif proposé a été obtenu par microfabrication en salle blanche puis caractérisé avant l’étude de ses performances. Une première phase de tests sur un système modèle, des billes de polystyrène dans de l’eau, a permis d’apporter la preuve de concept du fonctionnement du capteur, qui est effectivement capable de piéger rapidement les objets visés à sa surface afin de les détecter. Les mécanismes de transfert de masse ont été expliqués et la preuve de l’amélioration de la limite de détection par un facteur supérieur à 100 a été apportée. Dans un second temps, les performances du capteur appliqué à des objets biologiques ont été évaluées. Celui-ci piège efficacement des levures et des protéines, mais aucune amélioration n’a été observée dans le cas de la détection spécifique de l’hybridation entre deux brins d’acide désoxyribonucléique (ADN). Les causes de ce résultat ont été discutées et comprises et deux solutions différentes ont été explorées : l’adaptation de la fréquence d’opération et l’optimisation de la géométrie des électrodes. Ainsi, cette étude a permis de souligner la problématique de la mise en oeuvre d’effets électrocinétiques dans des milieux biologiques et de réfléchir aux pistes pertinentes pour sa résolution. / This thesis focuses on the development of an integrated plasmonic sensor capable to perform mass transport on targeted objects. The goal is to overcome the diffusion limit by trapping particules directly on the sensing surface. The adopted strategy was to structure the gold layer used for plasmonic detection in order to use the sofabricated structures to set the fluid and the molecules in motion by applying electric fields in the fluid. The mass transfer is realized through dielectrophoresis and electroosmosis, those two electrokinetic effects being operated by electrodes acting as sensor and actuator at the same time. An exhaustive state of the art as well as multiphysical simulations allowed us for designing a prototype for an integrated sensor consisting in gold interdigitated electrodes enabling plasmoninc sensing. The proposed device was obtained through microfabrication in clean room facilities and was characterized before the study of its performances. A first sequence of tests on a model system – polystyrene microbeads in water – brought the proof of concept we needed to validate the correct operation of the sensor, which is indeed capable of quickly trapping targeted objects on its surface and detecting them. The mass transfer mechanisms were explained and we showed the enhancement of the limit of detection by a factor greater than 100. In a second phase, performances of the sensor applied to biological objects were evaluated. It can effectively trap yeasts and proteins but no enhancement has been observed while detecting DNA hybridization events. Causes for this result were discussed and understood and two different solutions were explored: the adaptation of the operating frequency and the optimization of the electrodes geometry. Thus, this study highlighted the problematic of operating electrokinetic effects in biological media and suggested relevant leads towards its resolution.
66

Spectroscopie linéaire et ultra-rapide de nanoparticules métalliques : de l’ensemble au nano-objet individuel / Linear and ultra-fast spectroscopy of metallic nanoparticles : from ensemble to individual nano-objects

Juvé, Vincent 27 September 2011 (has links)
En passant de l’état massif à la nanoparticule les matériaux métalliques voient certaines de leurs caractéristiques modifiées de manière notable comme par exemple les propriétés optiques avec l’apparition d’une résonance dans le spectre optique, la Résonance Plasmon de Surface Localisée (RPSL) responsable du changement de couleur des nanoparticules métalliques. Les propriétés vibrationnelles et thermiques de nanoparticules métalliques ont été étudiées à l’aide d’une technique de Spectroscopie Femtoseconde. Nous avons montré qu’il était possible d’exciter et de détecter optiquement des fréquences de vibrations mécaniques dans le domaine térahertz pour des nanoparticules de platine composées de moins de cent atomes. D’autre part l’augmentation des effets dus aux interfaces a été mis en évidence sur les propriétés thermiques de nanoparticules d’or et d’argent. La résistance thermique à l’interface, résistance de Kapitza, voit son rôle augmenter lors du transfert thermique à l’échelle nanométrique. Une corrélation entre les valeurs mesurées et les impédances acoustiques des matériaux composants les interfaces a été mise en évidence. Nous avons aussi montré qu’elle augmente quand la température diminue de 300K à 70K. Les propriétés optiques de nanoparticules non sphériques ont été étudiées à l’aide de la Spectroscopie à Modulation Spatiale. Cette technique a permis de repérer puis de caractériser des nano-bâtonnets d’or individuels. Nous avons montré que la largeur spectrale de la RPSL est fortement dépendante de la géométrie des nanoparticules (diamètre et longueur). Cette double dépendance n’est pas prédite par les modèles classiques ou quantique existants / The size reduction of metals, from bulk to nanoparticles, induces significant modifications of their properties. For instance, the optical properties evolve and a new resonance, the localized surface plasmon resonance, appears in the optical spectrum and is responsible for the change of colors of metallic nanoparticles. This work is focused on studies of metals’ properties at the nanometric scale. In the first part, the vibrational and thermal properties are studied with a femtosecond spectroscopy technique. It is shown that it is possible to excite and detect optically vibrational frequencies in the terahertz domain by studying platinum nanoparticles formed by less than 100 atoms. The study of the thermal properties of the metallic nanoparticles (gold and silver) has shown that the boundary effect increases. This thermal boundary resistance, known as the Kapitza resistance, plays a dominant role in the heat transfer at the nanometric scale. A correlation between the experimental values of the thermal boundary resistance and the acoustic impedances of the boundary’s materials has been found. We have also shown that the Kapitza resistance is a decreasing function of the temperature in the 70-300K range. In the second part, the effect of the size reduction on the optical properties of non-spherical nanoparticles is observed. The Spatial Modulation Spectroscopy technique is used in order to locate and study individual gold nanorods. It is shown that the two geometrical parameters (the length and the diameter) of the nanorods influence the spectral linewidth of the localized surface plasmon resonance. This effect is not predicted by existing classical or quantum models

Page generated in 0.0739 seconds