91 |
Imaging the African superplume - upper mantle, tomography and moment tensorBrandt, Martin Barend Christopher 01 October 2012 (has links)
Brandt, Martin B.C. 2011. Imaging the African Superplume – Upper mantle,
Tomography and Moment tensor. Ph.D. thesis, Faculty of Science, University of the
Witwatersrand, Johannesburg, South Africa.
The African Superplume, African Superswell and East African Rift System are
amongst the most prominent geophysical features on Earth, but the structure,
evolution and interaction between these features is controversial. In my thesis I
conducted a range of investigations in an effort to better understand these issues. The
thesis presents the investigations into the structure and expressions of these features.
These include:
(I) A study of the upper mantle shear velocity structure beneath southern Africa to
investigate the source of the buoyancy that has powered the Superswell;
(II) Statistical hypothesis testing of middle-mantle shear velocity tomographic models
to evaluate evidence for links between the Superplume and low velocity features
in/near the transition zone; and
(III) Computation of three new regional moment tensors for South Africa to assess
crustal stress in the Kalahari craton, and its link with mantle structure and dynamics.
Waveform data were obtained for the study on the upper mantle shear velocity
structure and the moment tensor inversions from the Southern African Seismic
Experiment Kaapvaal craton array. For the statistical hypothesis testing on global
tomography images, new travel-time data from both global and AfricaArray stations
were added to Grand’s global shear velocity data set.
The principal findings of this study are summarized below.
I. The upper mantle shear velocity structure beneath the Kalahari craton is similar to
that of other shields, except for slightly slower velocities from 110–220 km depth.
The difference may be due to higher temperatures or a decrease in magnesium
number (Mg#). If the slower velocities in the deep lithosphere are due solely to a
temperature anomaly, then slightly less than half of the unusually high elevation of
the Kalahari craton can be explained by shallow buoyancy from a depleted hot
lithosphere. Decreasing the Mg# of the lower lithosphere would increase density and
counteract higher temperatures. If an excess temperature of 90 K over a 110 km depth
range and a corresponding decrease in Mg# of -2 between the Kalahari and the other
cratons are assumed, this would match the seismic velocity difference but would
result in essentially no buoyancy difference. We conclude that the high elevation of
the Kalahari craton can only be partially supported by shallow mantle buoyancy and
must have a deeper source. We determined a thickness of 250±30 km for the mantle transition zone below eastern
southern Africa, which is similar to the global average, but the corresponding velocity
gradient is less steep than in standard global models (PREM and IASP91). Velocity
jumps of 0.16±0.1 km/s (eastern) and 0.21±0.1 km/s (central) across the 410 km
discontinuity were found. Our results indicate a thermal or chemical anomaly in the
mantle transition zone, but this cannot be quantified due to uncertainty.
II. Statistical hypothesis testing on our global tomography images indicated that the
African Superplume rises from the core-mantle boundary to at least 1150 km depth,
and the upper mantle slow-velocity anomaly extends from the base of the lithosphere
to below the mantle transition zone. The model that links the African Superplume
with the slow-velocity anomaly in the upper mantle under eastern Africa has an equal
probability to an alternative hypothesis with a thin slow-velocity “obstruction zone” at
850 to 1000 km depth.
III. Finally, we calculated three regional moment tensors for South Africa and made
progress towards resolving the discrepancy between the local and moment magnitudes
we observe for the region. Moment tensors/focal mechanisms in southern Africa
change from normal faulting (extension) in the northeast near the East African Rift to
strike-slip faulting in the southwest. This confirms previous studies stating that not
only eastern Africa, but also southern Africa is being actively uplifted by lithospheric
modification at its base and/or the African Superplume.
|
92 |
Características de escoamentos decorrentes de diferenças de densidades / Characteristics of flows due density differencesSilva, Selma Vargas da 19 December 2002 (has links)
Neste trabalho analisam-se escoamentos de correntes de densidade tipo plumas, intrusões e corrente de fundo em torno de obstáculos. Os experimentos foram realizados em duas fases. Na primeira fase dos ensaios, a estratificação ambiente e a obtenção das correntes foram obtidas variando-se a densidade de soluções de água e sal. A visualização das correntes foi feita utilizando-se permanganato de potássio e sua dispersão foi obtida através do registro em câmera filmadora. Na segunda fase, os ensaios de plumas foram realizados com equipamento a laser de vapor de cobre (LVC) envolvendo o método de velocimetria a laser por processamento de imagens (VLPI). Nesta fase, observou-se grande dificuldade na visualização das partículas do escoamento e foi necessário a confecção de um sistema de aquecimento de água para a obtenção do escoamento superficial. É apresentado um modelo numérico em linguagem FORTRAN baseado no método das diferenças finitas para discretização da equação de Navier-Stokes e a obtenção de velocidades longitudinais e transversais. Observou-se, neste trabalho, a importância da visualização do fenômeno de correntes superficiais e intrusivas, tendo em vista a extrema sensibilidade destes fenômenos para com as condições de trabalho (alterações sutis geram grandes diferenças no escoamento obtido). Pode-se concluir que o método VLPI produz resultados satisfatórios para o campo de vetores de velocidade. As correntes intrusivas apresentaram configurações diversas para mesmas condições de escoamento, o que demonstra a necessidade de maiores estudos. O modelo numérico se mostrou coerente para determinados experimentos, mas as condições particulares da entrada dos reservatórios mostra que há a necessidade de implementações para uma forma mais abrangente de situações. / Unstable gravity currents flows like buoyant surface jet (BSJ), intrusions and dense currents around obstacles are analysed in this research. The experiments were performed in two phases. In the first one, the environmental stratification as well as the current flows were obtained varying the density of the water and salt solutions. The current visualization were possible by the use of the KMnO4 dye and its dispersion was recorded by video camera. In the second phase, the runs with plumes were evaluated with a laser vapour copper (LVC) equipment using the processing image velocimetry (PIV) method. In this phase, it was observed a great difficulty in the particle flow visualization and it was necessary a war water system to simulate overflow. It\'s presented a numerical model in fortran language based in the finit difference method to discretisize the Navier-Stokes equation and obtain the transversal and longitudinal velocities. It was noted in this research, the relevance of the visualization in overflows and intrusive flows because of the extreme sensitivity of these phenomenos to work conditions (slightly modifications generates great differences in the flow behaviour). It concludes that the PIV method results good data for vectors velocity field. The intrusive currents show many configurations to the same flow conditions which requires further investigations. The numerical model has shown coherance to particular experiments, but source particularities justifies the necessity of implementation to larger situations.
|
93 |
Langmuir Probe Measurements in the Plume of a Pulsed Plasma ThrusterEckman, Robert Francis 04 October 1999 (has links)
"As new, smaller satellites are built, the need for improved on-board propulsion systems has grown. The pulsed plasma thruster has received attention due to its low power requirements, its simple propellant management, and the success of initial flight tests. Successful integration of PPTs on spacecraft requires the comprehensive evaluation of possible plume-spacecraft interactions. The PPT plume consists of neutrals and ions from the decomposition of the Teflon propellant, material from electrode erosion, as well as electromagnetic fields and optical emissions. To investigate the PPT plume, an on-going program is underway at WPI that combines experimental and computational investigations. Experimental investigation of the PPT plume is challenging due to the unsteady, pulsed as well as the partially ionized character of the plume. In this thesis, a triple Langmuir probe apparatus was designed and used to obtain electron temperature and density measurements in the plume of a PPT. This experimental investigation provides further characterization of the plume, much needed validation data for computational models, and is useful in thruster optimization studies. The pulsed plasma thruster used in this study is a rectangular geometry laboratory model built at NASA Lewis Research Center for component lifetime tests and plume studies. It is almost identical in size and performance to the LES 8/9 thruster, ablating 26.6 ug of Teflon, producing an impulse bit of 256 uN-s and a specific impulse of 986 s at 20 J. All experiments were carried out at NASA LeRC Electric Propulsion Laboratory. The experimental setup included triple Langmuir probes mounted on a moveable probe stand, to collect data over a wide range of locations and operating conditions. Triple probes have the ability to instantaneously measure electron temperature and density, and have the benefit of being relatively simple to use, compared to other methods used to measure these same properties. The implementation of this measuring technique is discussed in detail, to aid future work that utilizes these devices. Electron temperature and density was measured from up to 45 degrees from the centerline on planes parallel and perpendicular to the thruster electrodes, for thruster energy levels of 5, 20 and 40 J. Radial distances extend from 6 to 20 cm downstream from the Teflon surface. These locations cover the core of the PPT plume, over a range of energy levels that corresponds to proposed mission operating conditions. Data analysis shows the spatial and temporal variation of the plume. Maximum electron density near the exit of the thruster is 1.6 x 1020, 1.6 x 1021, and 1.8 x 1021 m-3 for the 5, 20 and 40 J discharges, respectively. At 20 cm downstream from the Teflon surface, densities are 1 x 1019, 1.5 x 1020 and 4.2 x 1020 for the 5, 20 and 40 J discharges, respectively. The average electron temperature at maximum density was found to vary between 3.75 and 4.0 eV for the above density measurements at the thruster exit, and 20 cm from the Teflon surface the temperatures are 0.5, 2.5, and 3 eV for the 5, 20 and 40 J discharges. Plume properties show a great degree of angular variation in the perpendicular plane and very little in the parallel plane, most likely due to the rectangular geometry of the PPT electrodes. Simultaneous electron temperature and density traces for a single thruster discharge show that the hottest electrons populate the leading edge of the plume. Analysis between pulses shows a 50% variation in density and a 25% variation in electron temperature. Error analysis estimates that maximum uncertainty in the temperature measurements to be approximately +/- 0.75 eV due to noise smoothing, and the maximum uncertainty in electron density to be +/- 60%, due to assumptions related to the triple probe theory. In addition, analysis of previously observed slow and fast ion components in the PPT plume was performed. The analysis shows that there is approximately a 3 us difference in creation time between the fast and slow ions, and that this correlates almost exactly with the half period of the oscillations in the thruster discharge current."
|
94 |
Vertical motions at the fringes of the Icelandic plumeSchoonman, Charlotte Maria January 2017 (has links)
The Icelandic mantle plume has had a profound influence on the development of the North Atlantic region over its 64 Myr existence. Long-wavelength free-air gravity anomalies and full waveform tomographic studies suggest that the planform of the plume is highly irregular, with up to five fingers of hot asthenosphere radiating away from Iceland beneath the lithospheric plates. Two of these fingers extend beneath the British Isles and southern Scandinavia, where departures from crustal isostatic equilibrium and anomalous uplift have been identified. In this study, the spatial extent of present-day dynamic support associated with the Icelandic plume is investigated using receiver function analysis. Teleseismic events recorded at nine temporary and 59 permanent broadband, three-component seismometer stations are used to calculate 3864 P-to-S crustal receiver functions. The amplitude and arrival time of particular converted phases are assessed, and H-k stacking is applied to estimate bulk crustal properties. Sub-selections of receiver functions are jointly inverted with Rayleigh wave dispersion data to obtain crustal VS profiles at each station. Both inverse- and guided forward modelling techniques are employed, as well as a Bayesian, trans-dimensional algorithm. Moho depths thus obtained are combined with seismic wide-angle and deep reflection data to produce a comprehensive crustal thickness map of northwestern Europe. Moho depth is found to decrease from southeast (37 km) to northwest (26 km) in the British Isles and from northeast (46 km) to southwest (29 km) in Scandinavia, and does not positively correlate with surface elevation. Using an empirical relationship, crustal shear wave velocity profiles are converted to density profiles. Isostatic balances are then used to estimate residual topography at each station, taking into account these novel constraints on crustal density. Areas of significant residual topography are found in the northwestern British Isles (1400 m), southwestern Scandinavia (464 m) and Denmark (620 m), with convective support from the Icelandic plume as its most likely source. Finally, the irregular planform of the Icelandic plume is proposed to be a manifestation of radial viscous fingering due to a Saffman-Taylor instability. This fluid dynamical phenomenon occurs when less viscous fluid is injected into a layer of more viscous fluid. By comparing the thermal and convective characteristics of the plume with experimental and theoretical results, it is shown that viscous fingering could well explain the present-day distribution of plume material.
|
95 |
On pulsatile jets and related flowsLivesey, Daniel January 2017 (has links)
An overview of unsteady incompressible jet flows is presented, with the primary interest being radially developing jets in cylindrical polar coordinates. The radial free jet emanates from some orifice, being axisymmetric about the transverse (z) axis and possessing reflectional symmetry across its z=0 centreline. The radial wall jet is also axisymmetric about the transverse axis, however in this case impermeability and no-slip conditions are imposed at the wall, which is situated at z=0. The numerical solution of a linear perturbation superposed on the free jet, whose temporal form is assumed to be driven by a periodic source pulsation, gives rise to a wave-like disturbance whose amplitude grows downstream as its local wavelength decreases. An asymptotic analysis of this linear perturbation, which applies to the wall jet as well with some minor changes, captures the exact nature of the exponential spatial growth, and also algebraic attenuation of the growth. The linear theory is only valid for a small amplitude pulsation (|ε| << 1, where ε is the perturbation amplitude). When a nonlinear pulsation (ε = O(1)) is applied to the radial free jet, any linear theory must be dropped. Solving the full nonlinear system of equations reveals singular behaviour at a critical downstream location, which corresponds to the presence of an infinitely steep downstream gradient. The replacement of molecular diffusivity with a larger-scale eddy viscosity does little to affect the qualitative growth of the linear perturbation. In order for an experimental study to reproduce any of the discussed boundary-layer results, we must consider the behaviour of jet-type flows at finite Reynolds number. This involves solving the full Navier-Stokes equations numerically, to determine the Reynolds number at which we should expect to qualitatively recover boundary-layer behaviour. The steady solution for the radial free jet and its linear pulsation are studied in this way, as is the linear pulsatile planar free jet. We may enhance the streamwise velocity of a radial jet by applying swirl around the z axis. Modulating this swirl is looked at as a possible mechanism to induce the previously discussed pulsation, which then motivates the introduction of a finite spinning disk problem. In this case the system may be completely confined within an enclosed cylinder, making a hypothetical experimental approach somewhat more approachable.
|
96 |
Estudo do impacto do complexo petroquímico COMPERJ na atmosfera / Study of petrochemical complex impact COMPERJ in the atmosphereAntonio Marco Siciliano 29 October 2009 (has links)
Os modelos de dispersão de ar têm sido utilizados amplamente para investigação de padrões de dispersão, comportamento de emissões, estimativas de potenciais riscos a saúde humana, elaboração de propostas de gerenciamento ambiental e, também, na previsão de impacto da qualidade do ar. Alguns modelos, homologados por agência de regulação de alguns países ou comunidades, servem de base para as análises de risco com auxílio de simulação. Somente após este tipo de análise uma unidade fabril terá direito à sua instalação e operação nestes países. Nesta dissertação, serão abordados os principais poluentes presentes em uma indústria petroquímica básica, uma revisão sobre os principais tipos de modelos existentes no mercado e um estudo de caso será realizado empregando os modelos AERMOD e OZIPR/SAPRC. A indústria petroquímica básica a servir de modelo será o Complexo Petroquímico do Rio de Janeiro, que deverá ser instalado no município de Itaboraí e com operação prevista para o ano de 2012.
De acordo com as simulações realizadas neste trabalho, o poluente NOx apresentou os resultados mais críticos violando em algumas áreas os padrões primários e secundários de emissão. Diante deste fato, o ozônio se tornou um poluente secundário importante a ser analisado. E para sua simulação, premissas tiveram que ser tomadas, devido a ausência de dados, criando cenários que apresentaram resultados díspares: Ora violando os limites, ora se mantendo abaixo deles. Apesar disso, estes cenários apontaram a mesma solução para minimizar esta formação de ozônio: controlar as emissões de compostos orgânicos voláteis. / Air dispersion models have been widely used to investigate patterns of air dispersal, to predict emissions behavior, to estimate potential risks to human health, to develop environmental management procedures and also to evaluate the impact of air quality on the dispersion. Some models, approved by regulatory agencies, work as a simulation tool for risk analysis purposes because in some countries only by performing a risk analysis like such an industrial facility is allowed to be constructed and to operate. This dissertation will relate the main pollutants produced by a petrochemical facility, a review of the main ar dispersion models available in the market and will present an air dispersion study case in a petrochemical facility considering the usage of AERMOD and OZIPR / SAPRC dispersion models. The petrochemical facility considered as a basic model will be the Petrochemical Complex of Rio de Janeiro, which should be installed in Itaboraí, which start up is planned for the year of 2012.
According to the simulations in this work, the pollutant NOx presented the more critical results violating primary and secondary limits in some areas. Given this fact, ozone has become an important secondary pollutant to be analyzed. To make it simulation became possible, assumptions had to be taken due to lack of data to create scenarios that resulted sometimes legal limits violation, another times no violation. Nevertheless, these scenarios pointed to the same solution to minimize this formation of ozone: control volatile organic compounds emissions
|
97 |
Petrogênese e geocronologia das intrusões alcalinas de Morro Redondo, Mendanha e Morro de São João: caracterização do magmatismo alcalino no Estado do Rio de Janeiro e implicações geodinâmicas / Petrogenesis and geochronology of Morro Redondo, Mendanha and Morro São João alkaline complexes: characterization of alkaline magmatism in Rio de Janeiro State and geodynamic implicationsCarlos Eduardo Miranda Mota 21 December 2012 (has links)
Os modelos para a formação de plútons alcalinos da Província Alcalina do Sudeste Brasileiro ou Alinhamento Poços de Caldas-Cabo Frio associam a gênese destas rochas a grandes reativações ou a passagem de uma pluma mantélica, registrada pelo traço de um hot spot. O objetivo desta tese é, apresentar novos dados e interpretações para contribuir com a melhor elucidação e discussão destes modelos. Os estudos incluem mapeamento, petrografia, litogeoquímica, geoquímica isotópica de Sr, Nd e Pb e datação 40Ar/39Ar. As intrusões selecionadas correspondem ao Morro Redondo, Mendanha e Morro de São João, no Rio de Janeiro, localizados em posições distintas no alinhamento Poços de Caldas-Cabo Frio. A intrusão alcalina do Morro Redondo é composta majoritariamente de nefelina sienitos e sienitos com nefelina, com rara ocorrência de rochas máficas e é caracterizada por uma suíte alcalina sódica insaturada em sílica, de caráter metaluminosa a peralcalina. Esta intrusão foi datada em aproximadamente 74 Ma (idade-platô 40Ar/39Ar). A intrusão alcalina do Mendanha é composta por diversos tipos de rochas sieníticas, além de brechas e estruturas subvulcânicas, como rochas piroclásticas e diques e caracteriza-se por ser uma suíte alcalina sódica saturada em sílica, de caráter metaluminosa, diferente do que ocorre no Marapicu, este subsaturado em sílica. Esta intrusão apresentou duas idades-platô 40Ar/39Ar distintas de magmatismo: 64 Ma para as rochas do Mendanha e 54 Ma em dique de lamprófiro, registrando magmatismo policíclico. O Morro do Marapicu foi datado em aproximadamente 80 Ma. Já a intrusão alcalina do Morro de São João possui uma ampla variedade de litotipos saturados a subsaturados em sílica, tais como sienitos, álcali-sienitos e monzossienitos (alguns portadores de pseudoleucita), com variedades melanocráticas, tais como malignitos e fergustios. Estas rochas definem suas distintas suítes alcalinas subsaturadas em sílica: Uma de composição sódica e outra potássica. Há também uma suíte alcalina saturada em sílica, definida por gabros alcalinos e shonkinitos. A petrogênese destas intrusões corresponde ao modelo de cristalização fracionada, com assimilação de rochas encaixantes (AFC) como indicado pela alta variabilidade de razões isotópicas de estrôncio. No Morro de São João é sugerido o modelo de mistura magmática. Estas intrusões foram geradas a partir de magmas mantélicos enriquecidos, possivelmente associados à antiga zona de subducção relacionada ao orógeno Ribeira. Em razão das novas idades obtidas, o modelo de hot spot proposto fica prejudicado, visto que o Marapicu é de idade mais antiga das intrusões analisadas, o que era esperado para o Morro Redondo. Alguns modelos projetam plumas mantélicas com aproximadamente 1000 km de diâmetro, o que poderia explicar o Mendanha ser contemporâneo ao Morro de São João. As assinaturas isotópicas obtidas para as intrusões não se associam à assinatura isotópica de Trindade e, caso o modelo de plumas mantélicas seja o correto, a pluma que teria maior semelhança de assinatura isotópica é a pluma de Tristão da Cunha. / The models for formation of alkaline plutons of the Southeastern Brazil Alkaline Province or Poços de Caldas-Cabo Frio Magmatic Lineament, which genetic modeling associates crust reactivations or mantle plumes, with definition of a hot spot track. The objective of this work is to report new data and interpretations to contribute to a better understanding and discussion about the model of alkaline rock generation. The studies involved geological mapping, petrography, litogeochemistry, Sr-Nd-Pb isotopes and 40Ar/39Ar geochronology. The selected alkaline complexes are the Morro Redondo, Mendanha and Morro de São João, located at Rio de Janeiro State. These intrusions are well-distributed along the Poços de Caldas-Cabo Frio Magmatic Lineament. The Morro Redondo alkaline intrusion is composed mainly by nepheline syenites and nepheline-bearing syenites and mafic rocks are rare. It was defined as a sodic silica-undersaturated alkaline suite, with metaluminous to peralkaline characteristics. The intrusion was dated at 74 Ma (40Ar/39Ar plateau age). The Mendanha alkaline intrusion is compose by various types of syenitic rocks, breccias and subvulcanic structures, as pyroclastic rocks and dikes. It was defined by a sodic silica-saturated alkaline suite with metaluminous characterisics. The intrusion presented two distinct 40Ar/39Ar ages for the magmatism: 64 Ma for Mendanha rocks and 54 Ma to lamprophyre dike, which illustrates a polycyclic magmatism. The Morro do Marapicu 40Ar/39Ar age yielded 80 Ma. The Morro de São João alkaline intrusion has a large variety of silica-undersaturated to silica-saturated rocks, as syenites, alkali-syenites and monzosyenites (some pseudoleucite-bearing), with melanocratic varieties, as malignites and ferguites. These rocks defined distinct alkaline silica-undersaturated suggenting sodic and potassic types. There was found an alkaline silica-saturated suite, defined by alkaline gabbros and shonkinites. The petrogenesis of these intrusions corresponds to the fractional crystallization, with assimilation of host rocks, and the crustal contamination is indicated by high variability of Sr isotope ratios. For Morro de São João origin is suggested a K-Na bimodal magma. These intrusions were generated from enriched mantle-derived magmas, possible associated to ancient subduction zone of Ribeira orogen. In terms of the new 40Ar/39Ar data, the hot spot model is not plausible, because the Morro do Marapicu is older than the other studied intrusions. Some models projected mantle plumes with 1000 Km size, what may explain the reason for Mendanha and Morro de São João have the nearly the same age. The obtained isotopic signatures for these intrusions were not associated to Trindade signature and, if the mantle plumes model is correct, the plume that has the most similar signature is Tristão da Cunha.
|
98 |
Características de escoamentos decorrentes de diferenças de densidades / Characteristics of flows due density differencesSelma Vargas da Silva 19 December 2002 (has links)
Neste trabalho analisam-se escoamentos de correntes de densidade tipo plumas, intrusões e corrente de fundo em torno de obstáculos. Os experimentos foram realizados em duas fases. Na primeira fase dos ensaios, a estratificação ambiente e a obtenção das correntes foram obtidas variando-se a densidade de soluções de água e sal. A visualização das correntes foi feita utilizando-se permanganato de potássio e sua dispersão foi obtida através do registro em câmera filmadora. Na segunda fase, os ensaios de plumas foram realizados com equipamento a laser de vapor de cobre (LVC) envolvendo o método de velocimetria a laser por processamento de imagens (VLPI). Nesta fase, observou-se grande dificuldade na visualização das partículas do escoamento e foi necessário a confecção de um sistema de aquecimento de água para a obtenção do escoamento superficial. É apresentado um modelo numérico em linguagem FORTRAN baseado no método das diferenças finitas para discretização da equação de Navier-Stokes e a obtenção de velocidades longitudinais e transversais. Observou-se, neste trabalho, a importância da visualização do fenômeno de correntes superficiais e intrusivas, tendo em vista a extrema sensibilidade destes fenômenos para com as condições de trabalho (alterações sutis geram grandes diferenças no escoamento obtido). Pode-se concluir que o método VLPI produz resultados satisfatórios para o campo de vetores de velocidade. As correntes intrusivas apresentaram configurações diversas para mesmas condições de escoamento, o que demonstra a necessidade de maiores estudos. O modelo numérico se mostrou coerente para determinados experimentos, mas as condições particulares da entrada dos reservatórios mostra que há a necessidade de implementações para uma forma mais abrangente de situações. / Unstable gravity currents flows like buoyant surface jet (BSJ), intrusions and dense currents around obstacles are analysed in this research. The experiments were performed in two phases. In the first one, the environmental stratification as well as the current flows were obtained varying the density of the water and salt solutions. The current visualization were possible by the use of the KMnO4 dye and its dispersion was recorded by video camera. In the second phase, the runs with plumes were evaluated with a laser vapour copper (LVC) equipment using the processing image velocimetry (PIV) method. In this phase, it was observed a great difficulty in the particle flow visualization and it was necessary a war water system to simulate overflow. It\'s presented a numerical model in fortran language based in the finit difference method to discretisize the Navier-Stokes equation and obtain the transversal and longitudinal velocities. It was noted in this research, the relevance of the visualization in overflows and intrusive flows because of the extreme sensitivity of these phenomenos to work conditions (slightly modifications generates great differences in the flow behaviour). It concludes that the PIV method results good data for vectors velocity field. The intrusive currents show many configurations to the same flow conditions which requires further investigations. The numerical model has shown coherance to particular experiments, but source particularities justifies the necessity of implementation to larger situations.
|
99 |
Transferts multi-échelles des apports continentaux dans le golfe de Gascogne / Multiscale transfers of continental inputs in the Bay of BiscayOms, Pierre-Emmanuel 19 June 2019 (has links)
Lors de rejets chroniques ou accidentels de tritium des installations nucléaires dans l’eau de mer ou via les fleuves, la dispersion des radionucléides dans l’environnement marin est soumise à des processus de dispersion multiples. Ces processus dépendent de la zone considérée et des forçages tels que la marée, le vent, les flux de chaleurs et d’eau douce. Prédire la dispersion du tritium dans le golfe de Gascogne nécessite la prise en compte de l’ensemble de ces processus et des différents apports que représentent les eaux de surface de l’Atlantique Nord, les rejets des installations nucléaires, les entrées d’eau douces et les échanges avec l'atmosphère. L'objectif général de cette thèse est d'améliorer la connaissance sur l’hydrodynamisme du golfe de Gascogne, en couplant la mesure in-situ d’un traceur des masses d’eau : le tritium, avec un modèle hydrodynamique de dispersion (modèle MARS3D). Dans ce but, prélèvements ont été effectuées dans le golfe de Gascogne et dans les deux principaux contributeurs continentaux de tritium : la Loire et la Gironde. L’utilisation conjointe de la salinité et du tritium en tant que traceurs des eaux continentales a permis de différencier de manière innovante les apports provenant de ces deux fleuves à l'échelle du golfe. Les stocks mesurés et simulés de tritium au sein du plateau ont permis une première estimation du temps de résidence des masses d’eau continentales. / During chronic or accidental releases of tritium from nuclear facilities to seawater or through river discharges, the dispersion of radionuclides in the marine environment is subject to multiple dispersion processes. These processes depend on the area under consideration and forcings such as tide, wind, heat and freshwater flows.Predicting the dispersion of tritium in the Bay of Biscay requires taking into account all these processes and the various inputs: the North Atlantic surface waters, discharges from nuclear facilities, freshwater inputs and exchanges with the atmosphere. The main objective of this thesis is to improve the knowledge on the hydrodynamics of the Bay of Biscay by coupling in-situ measurements of a water masses tracer: the tritium, with a hydrodynamic dispersion model (MARS 3 D).To achieve this goal, samplings were carried out in the Bay of Biscay and the two main continental contributors of tritium: the Loire and Gironde rivers.The combined use of salinity and tritium as tracers of continental waters makes it possible to differentiate into an innovative way the inputs from these two rivers at the scale of the continental shelf. The measured and simulated stocks of tritium within the shelf provided a first estimate of the residence time of continental water in the Bay of Biscay.
|
100 |
Local Source Influences Upon the Structure of Dust Plumes in the Channel Country of Western Queensland, AustraliaButler, Harry, n/a January 2004 (has links)
Most of the early wind erosion research undertaken in Australia, concentrated on how wind erosion affects cultivated farm land. However, in the 1990's the focus of wind erosion research in Australia started to shift to include rangeland environments. Initially these rangeland experiments used experimental configurations that were developed for cultivated fields. This meant that in most cases a sampler was set up in the middle of a field and it was assumed that the data collected was representative of the field as a whole. It was also assumed that temporal changes in dust fluxes/concentration reflect overall changes in the land type erodibility and wind erosivity. However, recent experiments and field observations within the rangelands, of the Channel Country suggest that this assumption is not valid. These experiments and observations suggest that there are substantial spatial and temporal variations in erodibility within individual land types. Such variations complicate the interpretation of temporal and spatial erosion trends. In particular, this variability implies that it is difficult to compare sampler data between different wind erosion events. To begin quantifying and comparing sampler data between events within the rangeland environments, the Dust Source Interaction Simulation Model (DSism) was developed to simulate the effect that physical processes and spatial variations in erodibility have upon observed dust concentration pro- files. The modelling/simulation approach used is closely linked to experimental data via the extensive use of sensitivity testing. Another key feature of the DSism approach, is its flexibility in allowing different dust source areas to have particle emission characteristics. This combined sensitivity testing and simulation approach has provided new insights into the wind erosion processes. By using DSism, it has been possible to identify several key features of the wind erosion process within rangeland environments. The first observation is that spatial and temporal changes in erodibility produce distinct changes in both the vertical and crosswind dust concentration profiles. Further investigations, indicate that the dispersion processes in operation vary from event to event. In particular, the results presented here indicate that surface heating plays an important role in some wind erosion events. These results also suggest that even small variations in the vertical dust concentration profile can reflect temporal and spatial changes in processes and erodibility. Finally the simulation results show that the particle size distribution of a vertical dust concentration profile depends on (a) the processes in operation during a given event and (b) the spatial variation in the particle size emission characteristics of the various source areas. These findings have several important implications. In particular, they indicate that both the crosswind and vertical dust concentration profiles can be viewed as amalgamation of several distinct plumes from different dust source areas and that dust concentration profiles contain significant information about both the spatial distribution of sources and the processes in operation during any given event. Most field studies have used regression models to describe the variation in dust concentration with height. A problem with this approach is that it assumes that the variation in dust concentration with height, always has a given functional form (or shape) and that dust concentration always decreases with height. Field observations, indicate that this assumption is only valid for some events within rangeland environments and that dust concentration does not always decrease with height in these environments. In most cases, such variations from the regression fit have been assumed to be the result of experimental 'noise' (error) or spatial variations in erodibility. This thesis presents, modelling and field evidence, which suggests that such variations, are the result of a combination of spatial variations in erodibility and changes in thermal conditions.
|
Page generated in 0.0496 seconds