561 |
Preventative Counselling for Nova Scotia Adolescents: Examining Predictors of its Provision in Several CommunitiesCorbett, Erica L. 12 February 2010 (has links)
This project examined the extent to which Nova Scotian adolescents’ counselling needs are being met with respect to physical, sexual, substance use, and psychosocial health by their family physicians. This was accomplished by assessing how well Nova Scotian physicians provide preventative advice consistent with the Guidelines for Adolescent Preventative Services (GAPS). Analyses were performed using pooled data from surveys carried out in 2003 and 2006. Descriptive analyses, Poisson and logistic regression were used to examine associations of sociodemographic characteristics, need, and the presence of school based health centres (SBHCs) with the provision of advice. Advice was not well provided and appeared to be need-driven. Females were significantly more likely to be provided advice and respondent access to a SBHC increased the likelihood of advice being provided. These results have implications for policy and practice, specifically, ways to refine preventative healthcare services for the province’s adolescents to ensure optimal care.
|
562 |
Poisson Structures and Lie Algebroids in Complex GeometryPym, Brent 14 January 2014 (has links)
This thesis is devoted to the study of holomorphic Poisson structures and Lie algebroids, and their relationship with differential equations, singularity theory and noncommutative algebra.
After reviewing and developing the basic theory of Lie algebroids in the framework of complex analytic and algebraic geometry, we focus on Lie algebroids over complex curves and their application to the study of meromorphic connections. We give concrete constructions of the corresponding Lie groupoids, using blowups and the uniformization theorem. These groupoids are complex surfaces that serve as the natural domains of definition for the fundamental solutions of ordinary differential equations with singularities. We explore the relationship between the convergent Taylor expansions of these fundamental solutions and the divergent asymptotic series that arise when one attempts to solve an ordinary differential equation at an irregular singular point.
We then turn our attention to Poisson geometry. After discussing the basic structure of Poisson brackets and Poisson modules on analytic spaces, we study the geometry of the degeneracy loci---where the dimension of the symplectic leaves drops. We explain that Poisson structures have natural residues along their degeneracy loci, analogous to the Poincar\'e residue of a meromorphic volume form. We discuss the local structure of degeneracy loci that have small codimensions, and place strong constraints on the singularities of the degeneracy hypersurfaces of log symplectic manifolds. We use these results to give new evidence for a conjecture of Bondal.
Finally, we discuss the problem of quantization in noncommutative projective geometry. Using Cerveau and Lins Neto's classification of degree-two foliations of projective space, we give normal forms for unimodular quadratic Poisson structures in four dimensions, and describe the quantizations of these Poisson structures to noncommutative graded algebras. As a result, we obtain a (conjecturally complete) list of families of quantum deformations of projective three-space. Among these algebras is an ``exceptional'' one, associated with a twisted cubic curve. This algebra has a number of remarkable properties: for example, it supports a family of bimodules that serve as quantum analogues of the classical Schwarzenberger bundles.
|
563 |
Estimating the Effects of Air Pollutants on Recurrent Hospital Admission for Respiratory Diseases2013 October 1900 (has links)
Recurrent data are widely encountered in many applications. This thesis work focuses on how the recurrent hospital admissions relate to the air pollutants. In particular, we consider the data for two major cities in Saskatchewan. The study period ranges from January 1, 2005 to December 30, 2011 and involves 20,284 patients aged 40 years and older. The hospital admission data is from the Canadian Institute for Health Information (CIHI). The air pollutants data is from the National Air Pollution Surveillance Program (NAPS)
from Environment Canada. The data set has been approved by the Biomedical Research Ethics Board, University of Saskatchewan. The gaseous pollutants included in this study are carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), as well as particulate matter PM2:5 (tiny particles in the air that are 2:5 microns in width).
In the data analysis, we applied three
different existing models to all respiratory diseases and asthma, respectively. The three models are the Poisson process model (also called
Andersen-Gill model), the Poisson process model with the number of previous events as a covariate and the Poisson process model with shared gamma distributed frailties (random
effects). For all respiratory diseases, the Poisson process model with random effects provides
the best t in comparison to the other two models. The model output suggests that the increased risk of hospital readmission is significantly associated with increased CO and O3.
For asthma, the Poisson process model provides the best t in comparison to the other
two models. We found that only CO and O3 have significant effects on recurrent hospital
admissions due to asthma. We concluded this thesis with the discussion on the current and
potential future work.
|
564 |
Caractérisation épidémiologique de la maladie de Crohn au QuébecLowe, Anne-Marie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
565 |
Contribution à l'étude du rôle et du mode d'action de Fsh et de Lh dans le testicule de truiteSambroni, Elisabeth 22 November 2013 (has links) (PDF)
Chez les vertébrés, le processus de la spermatogénèse est directement contrôlé par deux hormones gonadotropes hypophysaires, Fsh et Lh. Chez les salmonidés, les profils de sécrétion des 2 hormones diffèrent et présentent des variations significatives au cours du cycle de développement spermatogénétique, suggérant que Fsh et Lh interviennent à des étapes différentes du processus. A la différence des mammifères, chez les poissons les 2 gonadotropines exercent une forte activité stéroïdogène, et par ailleurs il a été rapporté par plusieurs auteurs que leurs récepteurs seraient moins sélectifs vis-à-vis des 2 ligands. Ainsi, le périmètre des actions respectives de Fsh et de Lh n'est pas défini chez les poissons. D'autre part, les mécanismes de l'action de Fsh qui ne seraient pas relayés par les stéroïdes sont très mal connus. Chez la truite, nous avons déterminé que chaque gonadotropine agit essentiellement par l'intermédiaire de son récepteur respectif. L'analyse des variations du transcriptome testiculaire après un traitement in vitro par les hormones de la reproduction (Fsh, Lh, androgènes) a permis 1- de révéler des actions distinctes de Fsh et de Lh sur l'expression des gènes, 2- de mettre en évidence deux mécanismes d'action de la Fsh, l'un dépendant et l'autre indépendant de la production de stéroïdes et 3- d'identifier plusieurs acteurs d'interaction cellulaire régulés par Fsh, et probablement impliqués dans les étapes précoces de prolifération ou de différenciation des cellules germinales, tels que l'hormone antimüllérienne, la midkine, l'insulin-like growth factor1b, la follistatine-like 3 et l'activine, 4-de proposer une implication de Fsh dans les évènements tardifs de maturation et d'excrétion du sperme. Au-delà des acquis concernant les régulations endocriniennes et moléculaires chez la truite, ces travaux constituent un apport de connaissances qui peut être étendu à d'autres téléostéens pour décrypter l'action propre à Fsh dans le déclenchement de la maturation pubertaire. Enfin, nous montrons qu'une vaccination contre les récepteurs des gonadotropines constitue une voie potentielle de contrôle des maturations précoces en élevage.
|
566 |
The Einstein-Klein-Gordon Equations, Wave Dark Matter, and the Tully-Fisher RelationGoetz, Andrew Stewart January 2015 (has links)
<p>We examine the Einstein equation coupled to the Klein-Gordon equation for a complex-valued scalar field. These two equations together are known as the Einstein-Klein-Gordon system. In the low-field, non-relativistic limit, the Einstein-Klein-Gordon system reduces to the Poisson-Schrödinger system. We describe the simplest solutions of these systems in spherical symmetry, the spherically symmetric static states, and some scaling properties they obey. We also describe some approximate analytic solutions for these states.</p><p>The EKG system underlies a theory of wave dark matter, also known as scalar field dark matter (SFDM), boson star dark matter, and Bose-Einstein condensate (BEC) dark matter. We discuss a possible connection between the theory of wave dark matter and the baryonic Tully-Fisher relation, which is a scaling relation observed to hold for disk galaxies in the universe across many decades in mass. We show how fixing boundary conditions at the edge of the spherically symmetric static states implies Tully-Fisher-like relations for the states. We also catalog other ``scaling conditions'' one can impose on the static states and show that they do not lead to Tully-Fisher-like relations--barring one exception which is already known and which has nothing to do with the specifics of wave dark matter.</p> / Dissertation
|
567 |
Polytopes Arising from Binary Multi-way Contingency Tables and Characteristic Imsets for Bayesian NetworksXi, Jing 01 January 2013 (has links)
The main theme of this dissertation is the study of polytopes arising from binary multi-way contingency tables and characteristic imsets for Bayesian networks.
Firstly, we study on three-way tables whose entries are independent Bernoulli ran- dom variables with canonical parameters under no three-way interaction generalized linear models. Here, we use the sequential importance sampling (SIS) method with the conditional Poisson (CP) distribution to sample binary three-way tables with the sufficient statistics, i.e., all two-way marginal sums, fixed. Compared with Monte Carlo Markov Chain (MCMC) approach with a Markov basis (MB), SIS procedure has the advantage that it does not require expensive or prohibitive pre-computations. Note that this problem can also be considered as estimating the number of lattice points inside the polytope defined by the zero-one and two-way marginal constraints. The theorems in Chapter 2 give the parameters for the CP distribution on each column when it is sampled. In this chapter, we also present the algorithms, the simulation results, and the results for Samson’s monks data.
Bayesian networks, a part of the family of probabilistic graphical models, are widely applied in many areas and much work has been done in model selections for Bayesian networks. The second part of this dissertation investigates the problem of finding the optimal graph by using characteristic imsets, where characteristic imsets are defined as 0-1 vector representations of Bayesian networks which are unique up to Markov equivalence. Characteristic imset polytopes are defined as the convex hull of all characteristic imsets we consider. It was proven that the problem of finding optimal Bayesian network for a specific dataset can be converted to a linear programming problem over the characteristic imset polytope [51]. In Chapter 3, we first consider characteristic imset polytopes for all diagnosis models and show that these polytopes are direct product of simplices. Then we give the combinatorial description of all edges and all facets of these polytopes. At the end of this chapter, we generalize these results to the characteristic imset polytopes for all Bayesian networks with a fixed underlying ordering of nodes.
Chapter 4 includes discussion and future work on these two topics.
|
568 |
Estadística para Ingeniería 1 (CE54), ciclo 2013-1Ponce Rodríguez, Wilmer, Piña Rucoba, Gilber, López de Castilla Vásquez, Carlos 19 April 2013 (has links)
Separata del curso de Estadística para Ingeniería 1 (CE54), que corresponde al ciclo 2013-1. Este curso es una asignatura destinada al análisis estadístico.
|
569 |
Développement de modèles macroscopiques pour des systèmes quantiques non linéaires hors équilibrePatel, Mamodyasine 24 January 2005 (has links) (PDF)
Cette thèse a pour objectif de proposer un modèle mathématique pour le transport électronique hors-équilibre dans des systèmes mésoscopiques tels que les hétérostuctures ou les super-réseaux. On est amené à faire une étude asymptotique de systèmes non-linéaires stationnaires 1D du type Schrödinger-Poisson hors-équilibre. Le potentiel présente des sauts ainsi que des puits quantiques ponctuels à la limite. Pour l'étude non-linéaire à proprement parler, on établit l'existence de solutions asymptotiques, et que celles-ci sont déterminées par un nombre fini de paramètres. Néanmoins, le gros de l'étude consiste en une compréhension des propriétés spectrales de l'équation de Schrödinger linéaire associée, le système non-linéaire étudié étant semi-linéaire. La nature du problème nécessite une analyse sur le spectre continu, qui plus est la présence des puits engendre des résonances quantiques. Après avoir établi l'asymptotique des fonctions du Hamiltonien, on s'attarde sur les fonctions du moment. Leur analyse, plus complexe, est étroitement liée aux résonances de l'opérateur. On fournit une réponse complète dans les cas où la répartition des puits permet un traitement de ces résonances, notamment lorsque les puits sont bien groupés ou confinés à l'intérieur de l'île et suivant qu'ils sont alimentés ou non. Cette discussion met en évidence l'existence de solutions stationnaires dites classiques, par opposition aux solutions de nature quantique. On termine l'étude en mettant en évidence l'existence de solutions quantiques dans des cas particuliers.
|
570 |
Frontières de Poisson d'opérations quantiques et trajectoires quantiquesLim, Bunrith Jacques 26 November 2010 (has links) (PDF)
Le travail de cette thèse s'inscrit dans l'étude des fondements mathématiques de la théorie quantique de l'information et de la physique quantique, à travers l'étude de l'ensemble des points fixes (appelé aussi frontière de Poisson) d'opérateurs quantiques et l'étude des trajectoires quantiques en dimension infinie. Nous précisons en premier lieu la frontière de Poisson d'un opérateur quantique, puis nous répondons négativement aux conjectures soulevées par Arias et al. sur la frontière de Poisson d'un opérateur quantique. Dans un second temps, nous identifions la frontière de Poisson non-commutative d'un groupoïde s-discret mesuré permettant ainsi de retrouver un résultat de moyennabilité de l'extension de Poisson du groupoïde. Enfin nous obtenons des résultats de purification asymptotique des trajectoires quantiques à valeurs dans une algèbre fortement compacte.
|
Page generated in 0.0276 seconds