Spelling suggestions: "subject:"polarized raman spectroscopy"" "subject:"polarized saman spectroscopy""
1 |
Application of polarized Raman spectroscopy for analysis of phase transitions and anisotropic behavior of soft condensed matterPark, Min Sang 17 January 2012 (has links)
The importance of soft matter research, as a major class of materials including liquid crystals, polymers, colloids, emulsions, and forms, is attributed to the behavior resemblances in each branch of soft matter responding to the external perturbations. Hence, one of the most required inquiries in soft matter physics is understanding how the structures with characteristic length scales evolve in response to external perturbations, and concomitant phase transitions. We have focused on adopting polarized Raman spectroscopy to probe phase transitions in soft materials consisting of anisometric components and the evolution of molecular orientational ordering as a complementary tool to other methodologies, but distinct in some respects. The primary task is quantifying the degree of molecular orientation, i.e., obtaining orientational order parameters, in liquid crystal (LCs) system. Thermal evolution of orientation degree in a hitherto elusive biaxial nematic (Nb) phase as well as a commonly known uniaxial nematic (Nu) phase were interrogated from the measurements of anisotropy in polarized Raman intensities. We demonstrated reliable and applicable method to quantify the orientation degree for systems possessing anisotropic ordering.
We also addressed a strong potential of Raman spectroscopy that the changes of vibrational energy reflect the variations of intermolecular interactions and structural changes on the molecular level induced by phase transitions. As a subfield of soft matter, we characterized phase transitions and anisotropic ordering observed in an evaporating conjugated polymer solution and elucidated the mechanism of the entities undergoing phase transitions using mainly polarized Raman spectroscopy. In addition, we have shown that tracking Raman spectral changes can provide valuable information for understanding structure-property relations when the measurements of the evolution in physical properties are carried out simultaneously.
|
2 |
Multimodal structural, compositional, and mechanical characterization of cortical bone on the micron scaleSchrof, Susanne 31 July 2017 (has links)
Schlüsselfaktoren der bemerkenswerten mechanischen Eigenschaften von Knochen sind seine
komplexe hierarchische Struktur und chemische Zusammensetzung. Ziel dieser Dissertation war die simultane Untersuchung von Materialkomposition und 3D Struktur in Relation zu lokalen elastischen Eigenschaften von Knochengewebe unter Verwendung von neuen hochauflösenden experimentellen Konzepten. Im ersten Teil wurde polarisierte Raman Spektroskopie (PRS) eingesetzt um gesunden humanen kortikalen Knochen zu analysieren. Es konnte gezeigt werden, dass sich PRS eignet, um sowohl die chemische Zusammensetzung als auch die 3D Organisation der Kollagenfasern in einer Messung aufzuklären. Dominante Faserorientierungen ganzer Gewebedomänen konnten identifiziert
und mit der Koexistenz zweier Faserorganisationsmuster verknüpft werden. Durch Kombination derPRS Experimente mit ko-lokalisierten Synchrotron-Phasenkontrast-Nano-Tomografie- undUltraschallmikroskopie-Messungen wurde eine komplementäre Untersuchung von Faserarchitektur, chemischer Komposition und elastischen Eigenschaften einzelner Knochenlamellen ermöglicht. Die multimodale Analyse ergab, dass die charakteristischen lamellären Ondulationen der Elastizität in erster Linie durch sich lokal ändernde Faserorientierungen bedingt werden und nicht durch Variationen der Materialzusammensetzung, Abweichungen der Mineralkristallpartikeleigenschaften
oder durch Fluktuationen der Massendichte. Im letzten Teil wurde mittels akustischer Mikroskopie der Einfluss der Mutation des Neurofibromin 1 Genes auf die pathologische Entwicklung von mechanischen Knocheneigenschaften untersucht. Anhand zweier Knockout-Mausmodelle wurde festgestellt, dass nur eine Mutation in frühen mesenchymalen Vorläuferzellen die Steifigkeit der langen Röhrenknochen signifikant beeinträchtigt. Perspektivisch eignet sich der vorgestellte multimodale Ansatz für nicht-destruktive Charakterisierung eines breiten Spektrums biologischer und synthetischer Faserverbundwerkstoffe. / Key factors determining the remarkable mechanical performance of bone are its material composition and complex hierarchically structure. The aim of this thesis was the concurrent investigation of the chemical composition and 3D structure of bone tissue in relation to the local elastic properties by introducing novel high resolution experimental approaches. In the first part, polarized Raman spectroscopy (PRS) was applied to analyze healthy human cortical bone. In particular, it was demonstrated that PRS can be employed to simultaneously investigate the chemical composition and the 3D organization of collagen fibrils in a single experiment. Predominant fibril orientations in entire tissue domains were identified and linked to the coexistence of two fibril organization patterns. To further extend the analysis, PRS experiments were combined with synchrotron X-ray phase contrast nano tomography and scanning acoustic microscopy measurements in a site-matched study design. This multimodal approach enabled complementary imaging of the fibrillar architecture, tissue composition and resulting elastic properties of single bone lamellae. In line with earlier studies, crosscorrelation analysis strongly suggested that the characteristic elastic undulations of bone lamellae are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density fluctuations. Finally, acoustic microscopy was applied to analyze the impact of the neurofibromin 1 gene mutation on the pathologic development of the mechanical properties of bone. Analysis of two knock-out mouse models revealed that only Nf1 ablation in early mesenchymal progenitor cells significantly impairs the elastic stiffness of long bones. In future studies, the presented multimodal methodology can be translated for non-destructive and high resolution characterization of a broad range of biological and synthetic fiber composite materials.
|
Page generated in 0.0734 seconds