• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Widespread Vulnerability of Flowering Plant Seed Production to Pollinator Declines

Rodger, James G., Bennett, Joanne M., Razanajatovo, Mialy, Knight, Tiffany M., van Kleunen, Mark, Ashman, Tia L., Steets, Janette A., Hui, Cang, Arceo-Gómez, Gerardo, Burd, Martin, Burkle, Laura A., Burns, Jean H., Durka, Walter, Freitas, Leandro, Kemp, Jurene E., Li, Junmin, Pauw, Anton, Vamosi, Jana C. 01 October 2021 (has links)
Despite evidence of pollinator declines from many regions across the globe, the threat this poses to plant populations is not clear because plants can often produce seeds without animal pollinators. Here, we quantify pollinator contribution to seed production by comparing fertility in the presence versus the absence of pollinators for a global dataset of 1174 plant species. We estimate that, without pollinators, a third of flowering plant species would produce no seeds and half would suffer an 80% or more reduction in fertility. Pollinator contribution to plant reproduction is higher in plants with tree growth form, multiple reproductive episodes, more specialized pollination systems, and tropical distributions, making these groups especially vulnerable to reduced service from pollinators. These results suggest that, without mitigating efforts, pollinator declines have the potential to reduce reproduction for most plant species, increasing the risk of population declines.
2

A conservation perspective on the mechanisms that influence plant-pollinator interactions

BIELLA, Paolo January 2018 (has links)
Several aspects of plant-pollinator interactions are presented in the thesis. It contains a review on the open questions of plant-pollinator interactions from single species to complex networks. The following sections document novel results. Firstly, the conservation of complex pollination networks is addressed through the hierarchy of species' importance. In addition, the habitat requirements and interactions of a threatened rare pollinator species are explored. In the following chapters, the results from manipulative approaches applied in the field to plant-pollinator interactions are presented. The effect of pollinator's population decline on pollinators' foraging for pollen is investigated. Moreover, the way plant species loss impact several aspects of pollinator visitation is presented. Lastly, the impact of species removal on plant-pollinator network topology and on species ability of establishing new interactions is investigated.
3

Evaluating native warm-season grass and wildflower mixtures for beef cattle production in the Mid-Atlantic

Kubesch, Jonathan Omar Cole 20 December 2023 (has links)
Tall fescue grasslands are the dominant form of grasslands in the North American transition zone, however, warm-season forages provide necessary forage for livestock in the summer. Pollinators require steady forage availability in the same fashion as cattle. Native warm-season grasses (NWSG) and wildflowers (WF) could be incorporated into tall fescue (TF) grasslands to improve pollinator resources within agricultural landscapes without sacrificing livestock production. This balance of ecosystem services can be considered bee-friendly beef. Previous establishment experiments suggests that bee-friendly beef is a possibility, although establishment and persistence of NWSG-WF stands warrants additional research. Three small plot experiments were conducted to evaluate different planting methods designed to optimize establishment of NWSG-WF stands. Additionally, a grazing study examined whether NWSG-WF pasture enhancement could improve animal performance in TF grazing systems. The small plot experiments experienced extreme weed competition in the establishment year, although plots with higher NWSG content had fewer weeds over time. Floral production was comparable across treatment, which suggests lower WF seeding rates can generate comparable pollinator resources. Major findings from these experiments suggested that spatial or temporal separation of NWSGWF was unnecessary to generate successful establishment, varying the ratio of NWSG-WF in seed mixtures produced similar establishment outcomes, and that adding companion crops to NWSG-WF mixtures did not improve establishment success appreciably. In the grazing experiment, animal performance was improved in the biodiverse grazing systems when heifers 3 had access to the NWSG. Biodiverse and shaded grazing systems modified animal behavior and reduced body temperature relative to control grazing systems, although only biodiverse grazing systems improved animal performance. Native WF species failed to establish within the biodiverse grazing system, but white clover provided all subsequent floral production. Establishing WF in pastures is challenging and warrants additional study on more effective weed control strategies and systems to ensure establishment success. Selecting WF for agronomic performance or breeding such plant material will be necessary to improve emergence and establishment dynamics. Ideally trait data can identify the optimal WF species for specific grazing systems. Biodiverse NWSG-WF can be highly effective at improving summer weight gain in beef cattle. Future studies should focus on finding a more optimal balance of NWSG, WF, and TF that can benefit beef cattle production, pollinator services, and ecosystem services regarding soil and water quality, as well as pasture resiliency to dynamic conditions. / Doctor of Philosophy / Tall fescue grasslands are the dominant form of grasslands in the North American transition zone, however, warm-season forages provide necessary forage for livestock in the summer. Pollinators require steady forage availability in the same fashion as cattle. Native warm-season grasses (NWSG) and wildflowers (WF) could be incorporated into tall fescue (TF) grasslands to improve pollinator resources within agricultural landscapes without sacrificing livestock production. This balance of ecosystem services can be considered bee-friendly beef. Previous establishment experiments suggests that bee-friendly beef is a possibility, although establishment and persistence of NWSG-WF stands warrants additional research. Three small plot experiments were conducted to evaluate different planting methods designed to optimize establishment of NWSG-WF stands. Additionally, a grazing study examined whether NWSG-WF pasture enhancement could improve animal performance in TF grazing systems. The small plot experiments experienced extreme weed competition in the establishment year, although plots with higher NWSG content had fewer weeds over time. Floral production was comparable across treatment, which suggests lower WF seeding rates can generate comparable pollinator resources. Major findings from these experiments suggested that spatial or temporal separation of NWSGWF was unnecessary to generate successful establishment, varying the ratio of NWSG-WF in seed mixtures produced similar establishment outcomes, and that adding companion crops to NWSG-WF mixtures did not improve establishment success appreciably. In the grazing experiment, animal performance was improved in the biodiverse grazing systems when heifers 3 had access to the NWSG. Biodiverse and shaded grazing systems modified animal behavior and reduced body temperature relative to control grazing systems, although only biodiverse grazing systems improved animal performance. Native WF species failed to establish within the biodiverse grazing system, but white clover provided all subsequent floral production. Establishing WF in pastures is challenging and warrants additional study on more effective weed control strategies and systems to ensure establishment success. Selecting WF for agronomic performance or breeding such plant material will be necessary to improve emergence and establishment dynamics. Ideally trait data can identify the optimal WF species for specific grazing systems. Biodiverse NWSG-WF can be highly effective at improving summer weight gain in beef cattle. Future studies should focus on finding a more optimal balance of NWSG, WF, and TF that can benefit beef cattle production, pollinator services, and ecosystem services regarding soil and water quality, as well as pasture resiliency to dynamic conditions.
4

Pollinator Populations in Massachusetts Cranberry, 1990 to 2009: Changes in Diversity and Abundance, Effects of Agricultural Intensification, and a Contribution to the North American Pollinator Survey.

Notestine, Molly M 01 January 2010 (has links) (PDF)
It is now widely accepted that over one-third of the global food supply depends upon pollinators. Risking severe ecological and economic implications, the status of the 4000 species of bees native to North America has been poorly understood due to a lack of long-term survey data. In this study, I conducted bee surveys on Massachusetts cranberry (Vaccinium macrocarpon Ait.) bogs from 2007-2009 and compared diversity and abundance data to those from historical surveys performed in 1990-1992 on the same bogs. I found that overall bee diversity declined severely in the 19-year survey period, while total bee abundance remained consistent. My data provide supporting evidence for the loss of North American bumble bees (Bombus spp.), but also provide the first evidence for declines in the U.S. in overall wild bee diversity. Maximizing the potential for agricultural landscapes to serve as quality pollinator habitat and identifying appropriate integrated pest management strategies should involve a comprehensive understanding of each species’ life history traits and conservation status. The loss of biodiversity associated with the intensification of agriculture has been well documented for several wildlife species but remains poorly understood for bees, which provide pollination to many agricultural crops. Most pollinator-dependent crops rely heavily on managed honey bees (Apis mellifera L.) for pollination. Four thousand other species of bees native to North America may provide pollination insurance in the event of honey bee losses, but without a clear understanding of how agricultural intensification affects wild bees, habitat conservation measures aimed at protecting them may be futile. In the second part of this study, I evaluated six metrics of agricultural intensification with respect to native bee diversity and abundance in Massachusetts cranberry bogs, including honey bee competition, bog management type (i.e. organic versus conventional), distance from epicenter of cranberry-growing region, toxicity of insecticide program, susceptibility of reproductive bees to insecticide, and surrounding land use. I found a clear association between reduced native bee diversity and abundance and the effects of increased agricultural intensification of the landscape. Recognition that native bee communities in North America are diminishing as a consequence of agricultural intensification may help to unify a movement toward improved conservation management.
5

Humming along or buzzing off?: the elusive consequences of plant-pollinator mismatches and factors limiting seed set in the Coast Range of British Columbia

Straka, Jason Ryan 29 November 2012 (has links)
There is concern that climate change may cause mismatches between timing of flowering and activity of pollinators (phenology). However, concluding that mismatches will occur, and have serious consequences for pollination services, requires assumptions that have not yet been tested. I begin by discussing a set of these assumptions, bringing past research into the context of mismatch. Briefly, the assumptions are that 1) dates of first-flowering or emergence (DFFE) correctly describe phenology (and therefore mismatch); 2) differences in DFFE represent the magnitude of mismatch; 3) advancement of DFFE will be the primary phenological change; 4) shifts will be random and independent for each species; 5) populations of plants and pollinators are “bottom-up” regulated by their mutualistic interactions; 6) all interactions are of similar strength and importance; 7) dispersal, and the spatial context of phenological mismatches can be ignored; and ecological processes including 8) phenotypic plasticity and adaptive evolution of phenology, 9) competition and facilitation, and 10) emergence of novel interactions, will not affect mismatches. I then describe novel experiments, which could help to account for some of these assumptions, clarifying the existence and impacts of mismatches. Next, I present an original field experiment on factors affecting seed set in an alpine meadow in the Coast Range of British Columbia, Canada. I found evidence contradicting the assumption that seed set is primarily limited by pollination. My data highlight the roles of phenology, temperature (degree-days above 15°C, and frost hours), and interactions with pollinators (mutualists) and seed-predators (floral antagonists) in driving patterns of seed set. Seed set of early and late-flowering species responded differently to a 400m elevation gradient, which might be explained by phenology of bumble bees. My data suggest that the consequences of mismatch may be smallest for plants that are fly-pollinated and self-fertile. Non-selfing, bee-pollinated species might be more prone to reproductive limitation through mismatch (affected by snowmelt and cumulative degree-days). Plants that are limited by seed-predators might be negatively affected by warming temperatures with fewer frost hours, and extreme events such as late-season frosts and hail storms can prevent plants from setting seed entirely. Overall, my work emphasizes the importance of complementing theory, data-driven simulations, and meta-analyses with experiments carried out in the field. / Graduate

Page generated in 0.0976 seconds