• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 1
  • Tagged with
  • 30
  • 30
  • 22
  • 21
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Simulação numérica da dispersão de poluentes em zonas urbanas considerando efeitos térmicos

Madalozzo, Deborah Marcant Silva January 2012 (has links)
O objetivo deste trabalho é estudar, dentro da Engenharia do Vento Computacional (EVC), a dispersão de poluentes em zonas urbanas, empregando-se um modelo numérico baseado em técnicas da Dinâmica dos Fluidos Computacional para escoamentos incompressíveis, não isotérmicos e com transporte de massa. Um esquema explícito de dois passos é usado para a discretização temporal das equações governantes, considerando expansões em séries de Taylor de segunda ordem para as derivadas no tempo. O processo de discretização espacial é realizado através da aplicação do Método dos Elementos Finitos (MEF), onde hexaedros de oito nós com um ponto de integração são utilizados. A turbulência é tratada numericamente através da Simulação de Grandes Escalas (LES) e os modelos clássico e dinâmico de Smagorinsky são empregados na modelagem das escalas inferiores à resolução da malha. Efeitos de temperatura sobre o escoamento são considerados na forma de forças de flutuação presentes na equação de balanço de momentum, as quais são calculadas a partir da aproximação de Boussinesq. Técnicas de paralelização em memória compartilhada (OpenMP) são também usadas a fim de melhorar a eficiência computacional do presente modelo para problemas com grande número de elementos. Exemplos clássicos de Dinâmica de Fluidos e Fenômenos de Transporte são inicialmente analisados para teste das ferramentas numéricas implementadas. Problemas de dispersão de poluentes com e sem a inclusão dos efeitos de temperatura são abordados para configurações geométricas bi e tridimensionais de street canyons, representando a unidade geométrica básica encontrada em centros urbanos de grandes cidades. / The main goal of the present work is to study the pollutant dispersion in urban areas using a numerical model based on techniques developed by Computational Fluid Dynamics, where applications of Computational Wind Engineering (CWE) are analyzed considering incompressible flows with heat and mass transport. A two-step explicit scheme is adopted for the time discretization of the governing equations considering second order Taylor series expansions of the time derivative terms. Spatial discretization is performed by applying the Finite Element Method (FEM), where eight-node hexahedral elements with one-point quadrature are utilized. Turbulence is numerically analyzed by using Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scale modeling. Thermal effects on the flow field are taken into account through buoyancy forces acting on the momentum balance equation, which are calculated considering the Boussinesq approximation. Shared memory parallelization techniques (OpenMP) are also employed in order to improve computational efficiency for problems with large number of elements. Classic examples of Fluid Dynamics and Transport Phenomena are first analyzed to verify the numerical tools implemented. Problems involving pollutant dispersion with and without the inclusion of thermal effects are investigated for two and three-dimensional geometric configurations of street canyons, which represent the basic geometric unit observed in urban centers of large cities.
22

Solução GILTT bidimensional em geometria cartesiana : simulação da dispersão de poluentes na atmosfera / Giltt two-dimensional solution in cartesian geometry : simulation Of the pollutant dispersion in the atmosphere

Buske, Daniela January 2008 (has links)
Na presente tese é apresentada uma nova solução analítica para a equação de ad-vecção-difusão bidimensional transiente para simular a dispersão de poluentes na atmosfera. Para tanto, a equação de advecção-difusão é resolvida pela combinação da transformada de Laplace e da técnica GILTT (Generalized Integral Laplace Transform Technique). O fechamento da turbulência para os casos Fickiano e não-Fickiano é considerado. É investigado o problema de modelagem da dispersão de poluentes em condições de ventos fortes e fracos considerando, para o caso de ventos fracos, a difusão longitudinal na equação de advecção-difusão. Além disso, foi incluída no modelo a velocidade vertical e avaliada sua influência considerando-se o campo de velocidades constante e também geradas via LES (Large Eddy Simulation), para poder simular uma camada limite turbulenta mais realística. Os resultados obtidos por essa metodologia são validados com resultados experimentais disponíveis na literatura. / In the present thesis it is presented a new analytical solution for the transient two- dimensional advection-diffusion equation to simulate the pollutant dispersion in atmosphere. For that, the advection-diffusion equation is solved combining the Laplace transform and the GILTT (Generalized Integral Laplace Transform Technique) techniques. The turbulence closure for Fickian and non-Fickian cases is considered. It is investigated the problem of modeling the pollutant dispersion in strong and weak winds considering, for the case of low wind conditions, the longitudinal diffusion in the advection-diffusion equation. Moreover, it was considered in the model the vertical velocity and its influence was evaluated considering velocities field constant and also generated by means of LES (Large Eddy Simulation), to simulate a more realistic turbulent boundary layer. The results attained by this methodology are validated with experimental results available in literature.
23

Solução GILTT bidimensional em geometria cartesiana : simulação da dispersão de poluentes na atmosfera / Giltt two-dimensional solution in cartesian geometry : simulation Of the pollutant dispersion in the atmosphere

Buske, Daniela January 2008 (has links)
Na presente tese é apresentada uma nova solução analítica para a equação de ad-vecção-difusão bidimensional transiente para simular a dispersão de poluentes na atmosfera. Para tanto, a equação de advecção-difusão é resolvida pela combinação da transformada de Laplace e da técnica GILTT (Generalized Integral Laplace Transform Technique). O fechamento da turbulência para os casos Fickiano e não-Fickiano é considerado. É investigado o problema de modelagem da dispersão de poluentes em condições de ventos fortes e fracos considerando, para o caso de ventos fracos, a difusão longitudinal na equação de advecção-difusão. Além disso, foi incluída no modelo a velocidade vertical e avaliada sua influência considerando-se o campo de velocidades constante e também geradas via LES (Large Eddy Simulation), para poder simular uma camada limite turbulenta mais realística. Os resultados obtidos por essa metodologia são validados com resultados experimentais disponíveis na literatura. / In the present thesis it is presented a new analytical solution for the transient two- dimensional advection-diffusion equation to simulate the pollutant dispersion in atmosphere. For that, the advection-diffusion equation is solved combining the Laplace transform and the GILTT (Generalized Integral Laplace Transform Technique) techniques. The turbulence closure for Fickian and non-Fickian cases is considered. It is investigated the problem of modeling the pollutant dispersion in strong and weak winds considering, for the case of low wind conditions, the longitudinal diffusion in the advection-diffusion equation. Moreover, it was considered in the model the vertical velocity and its influence was evaluated considering velocities field constant and also generated by means of LES (Large Eddy Simulation), to simulate a more realistic turbulent boundary layer. The results attained by this methodology are validated with experimental results available in literature.
24

Simulação numérica da dispersão de poluentes em zonas urbanas considerando efeitos térmicos

Madalozzo, Deborah Marcant Silva January 2012 (has links)
O objetivo deste trabalho é estudar, dentro da Engenharia do Vento Computacional (EVC), a dispersão de poluentes em zonas urbanas, empregando-se um modelo numérico baseado em técnicas da Dinâmica dos Fluidos Computacional para escoamentos incompressíveis, não isotérmicos e com transporte de massa. Um esquema explícito de dois passos é usado para a discretização temporal das equações governantes, considerando expansões em séries de Taylor de segunda ordem para as derivadas no tempo. O processo de discretização espacial é realizado através da aplicação do Método dos Elementos Finitos (MEF), onde hexaedros de oito nós com um ponto de integração são utilizados. A turbulência é tratada numericamente através da Simulação de Grandes Escalas (LES) e os modelos clássico e dinâmico de Smagorinsky são empregados na modelagem das escalas inferiores à resolução da malha. Efeitos de temperatura sobre o escoamento são considerados na forma de forças de flutuação presentes na equação de balanço de momentum, as quais são calculadas a partir da aproximação de Boussinesq. Técnicas de paralelização em memória compartilhada (OpenMP) são também usadas a fim de melhorar a eficiência computacional do presente modelo para problemas com grande número de elementos. Exemplos clássicos de Dinâmica de Fluidos e Fenômenos de Transporte são inicialmente analisados para teste das ferramentas numéricas implementadas. Problemas de dispersão de poluentes com e sem a inclusão dos efeitos de temperatura são abordados para configurações geométricas bi e tridimensionais de street canyons, representando a unidade geométrica básica encontrada em centros urbanos de grandes cidades. / The main goal of the present work is to study the pollutant dispersion in urban areas using a numerical model based on techniques developed by Computational Fluid Dynamics, where applications of Computational Wind Engineering (CWE) are analyzed considering incompressible flows with heat and mass transport. A two-step explicit scheme is adopted for the time discretization of the governing equations considering second order Taylor series expansions of the time derivative terms. Spatial discretization is performed by applying the Finite Element Method (FEM), where eight-node hexahedral elements with one-point quadrature are utilized. Turbulence is numerically analyzed by using Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scale modeling. Thermal effects on the flow field are taken into account through buoyancy forces acting on the momentum balance equation, which are calculated considering the Boussinesq approximation. Shared memory parallelization techniques (OpenMP) are also employed in order to improve computational efficiency for problems with large number of elements. Classic examples of Fluid Dynamics and Transport Phenomena are first analyzed to verify the numerical tools implemented. Problems involving pollutant dispersion with and without the inclusion of thermal effects are investigated for two and three-dimensional geometric configurations of street canyons, which represent the basic geometric unit observed in urban centers of large cities.
25

Simulação numérica da dispersão de poluentes em zonas urbanas considerando efeitos térmicos

Madalozzo, Deborah Marcant Silva January 2012 (has links)
O objetivo deste trabalho é estudar, dentro da Engenharia do Vento Computacional (EVC), a dispersão de poluentes em zonas urbanas, empregando-se um modelo numérico baseado em técnicas da Dinâmica dos Fluidos Computacional para escoamentos incompressíveis, não isotérmicos e com transporte de massa. Um esquema explícito de dois passos é usado para a discretização temporal das equações governantes, considerando expansões em séries de Taylor de segunda ordem para as derivadas no tempo. O processo de discretização espacial é realizado através da aplicação do Método dos Elementos Finitos (MEF), onde hexaedros de oito nós com um ponto de integração são utilizados. A turbulência é tratada numericamente através da Simulação de Grandes Escalas (LES) e os modelos clássico e dinâmico de Smagorinsky são empregados na modelagem das escalas inferiores à resolução da malha. Efeitos de temperatura sobre o escoamento são considerados na forma de forças de flutuação presentes na equação de balanço de momentum, as quais são calculadas a partir da aproximação de Boussinesq. Técnicas de paralelização em memória compartilhada (OpenMP) são também usadas a fim de melhorar a eficiência computacional do presente modelo para problemas com grande número de elementos. Exemplos clássicos de Dinâmica de Fluidos e Fenômenos de Transporte são inicialmente analisados para teste das ferramentas numéricas implementadas. Problemas de dispersão de poluentes com e sem a inclusão dos efeitos de temperatura são abordados para configurações geométricas bi e tridimensionais de street canyons, representando a unidade geométrica básica encontrada em centros urbanos de grandes cidades. / The main goal of the present work is to study the pollutant dispersion in urban areas using a numerical model based on techniques developed by Computational Fluid Dynamics, where applications of Computational Wind Engineering (CWE) are analyzed considering incompressible flows with heat and mass transport. A two-step explicit scheme is adopted for the time discretization of the governing equations considering second order Taylor series expansions of the time derivative terms. Spatial discretization is performed by applying the Finite Element Method (FEM), where eight-node hexahedral elements with one-point quadrature are utilized. Turbulence is numerically analyzed by using Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scale modeling. Thermal effects on the flow field are taken into account through buoyancy forces acting on the momentum balance equation, which are calculated considering the Boussinesq approximation. Shared memory parallelization techniques (OpenMP) are also employed in order to improve computational efficiency for problems with large number of elements. Classic examples of Fluid Dynamics and Transport Phenomena are first analyzed to verify the numerical tools implemented. Problems involving pollutant dispersion with and without the inclusion of thermal effects are investigated for two and three-dimensional geometric configurations of street canyons, which represent the basic geometric unit observed in urban centers of large cities.
26

Solução GILTT bidimensional em geometria cartesiana : simulação da dispersão de poluentes na atmosfera / Giltt two-dimensional solution in cartesian geometry : simulation Of the pollutant dispersion in the atmosphere

Buske, Daniela January 2008 (has links)
Na presente tese é apresentada uma nova solução analítica para a equação de ad-vecção-difusão bidimensional transiente para simular a dispersão de poluentes na atmosfera. Para tanto, a equação de advecção-difusão é resolvida pela combinação da transformada de Laplace e da técnica GILTT (Generalized Integral Laplace Transform Technique). O fechamento da turbulência para os casos Fickiano e não-Fickiano é considerado. É investigado o problema de modelagem da dispersão de poluentes em condições de ventos fortes e fracos considerando, para o caso de ventos fracos, a difusão longitudinal na equação de advecção-difusão. Além disso, foi incluída no modelo a velocidade vertical e avaliada sua influência considerando-se o campo de velocidades constante e também geradas via LES (Large Eddy Simulation), para poder simular uma camada limite turbulenta mais realística. Os resultados obtidos por essa metodologia são validados com resultados experimentais disponíveis na literatura. / In the present thesis it is presented a new analytical solution for the transient two- dimensional advection-diffusion equation to simulate the pollutant dispersion in atmosphere. For that, the advection-diffusion equation is solved combining the Laplace transform and the GILTT (Generalized Integral Laplace Transform Technique) techniques. The turbulence closure for Fickian and non-Fickian cases is considered. It is investigated the problem of modeling the pollutant dispersion in strong and weak winds considering, for the case of low wind conditions, the longitudinal diffusion in the advection-diffusion equation. Moreover, it was considered in the model the vertical velocity and its influence was evaluated considering velocities field constant and also generated by means of LES (Large Eddy Simulation), to simulate a more realistic turbulent boundary layer. The results attained by this methodology are validated with experimental results available in literature.
27

Modelagem da poluição do ar por reações fotoquímicas associada à fontes veiculares na região metropolitana de Porto Alegre / Modeling of air pollution by photochemical reactions associated with vehicular sources in metropolitan area of Porto Alegre

Cuchiara, Gustavo Copstein, Cuchiara, Gustavo Copstein 23 February 2011 (has links)
Made available in DSpace on 2014-08-20T14:25:52Z (GMT). No. of bitstreams: 1 dissertacao_gustavo_cuchiara.pdf: 35782355 bytes, checksum: 0606b9c213fa2c0a65dc1b1bf8a4bc6a (MD5) Previous issue date: 2011-02-23 / One of the main problems related to air pollution in urban areas is caused by photochemical oxidants.... / Um dos maiores problemas originados pela poluição do ar em áreas urbanas é o provocado pelos oxidantes fotoquímicos....
28

Impacto ambiental em meios aquáticos : modelagem, aproximação e simulação de um estudo na Baía de Buenaventura-Colômbia / Environmental impact on water means : modeling, approach and simulation of a study in the Bay of Buenaventura-Colombia

Cajas Guaca, Denis, 1983- 26 August 2018 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:20:05Z (GMT). No. of bitstreams: 1 CajasGuaca_Denis_M.pdf: 6132685 bytes, checksum: 5e3780d261cb1b925daf089e42c326af (MD5) Previous issue date: 2015 / Resumo: Esta pesquisa visa descrever e ilustrar mediante a modelagem matemática e simulação computacional a poluição por esgoto que ocorre na Baía de Buenaventura no sudoeste do Pacífico Colombiano, e a influência do poluente no convívio de duas espécies de peixes. Para a dispersão de poluente usaremos o modelo que envolve a equação de Difusão-Advecção, a qual descreve as principais caraterísticas a considerar para o estudo do nosso problema, com suas respectivas condições de fronteira do entorno natural, considerando absorção de poluente nas margens da baía. Para a dinâmica populacional entre as espécies de peixes será usado um sistema não linear clássico do tipo Lotka-Volterra para modelar este problema, com condições de contorno de Neumann. A solução aproximada do modelo é obtida numericamente usando um método de segunda ordem no espaço e no tempo. Para a discretização da variável espacial usamos um método de diferenças finitas de segunda ordem e o método de Crank Nicolson para a discretização da variável temporal. Os resultados mostrados nas simulações computacionais para a concentração de poluente, e para a dinâmica populacional nos permitem julgar melhor o que está acontecendo ou o que pode acontecer, refletindo a necessidade de que os orgãos governamentais implementem mecanismos de mitigação ao problema ambiental para tentar diminuir os efeitos adversos do despejo direto no mar de águas residuais sem tratamento / Abstract: The propose of this research is to describe and illustrate the water pollution by sewage which occurs in Buenaventura Bay, in the southwest of the Colombian Pacific, and the influence of the pollutant in the interaction of two fish species, using mathematical modeling and computer simulation. Pollutant dispersion will be obtain using the model that involves the Diffusion - Advection equation, which describes the main features to be considered for the study of our problem with its respective boundary conditions of the natural environment, considering pollutant absorption in bayside. In order to describe the population dynamics between the fish species the classic Lotka -Volterra nonlinear system with Neumann boundary conditions will be used. The approximate solution of the model is obtained numerically using a second order method on the space and time. In order to discretize the spatial variable we use a second order finite difference method and the Crank Nicolson method for the time discretization. The results obtained in the computer simulations for the pollutant concentration, and the population dynamics allow us to judge what happening or what might happen. Reflecting in this way the necessity for the government agencies to implement mitigation mechanisms of the environmental problem in order to try reduce the adverse effects of dumping untreated sewage water directly into the sea / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
29

Advanced turbulence models for the simulation of air pollutants dispersion in urban area

Longo, Riccardo 10 September 2020 (has links) (PDF)
NOWADAYS, a number of studies keep on demonstrating the existence of a strong relation between high concentrations of particulate matter (PM) and the prevalence of human morbidity and mortality. Large particles can be filtered in the nose or in the throat, while fine particles (about10 micrometer) can settle in the bronchi and lungs, leading to more serious consequences. According to Karagulian et al. the major sources of urban air pollution are traffic (25%), combustion and agriculture (22%), domestic fuel burning (20%), natural dust (18%) and industrial activities (15%).As a consequence, the detailed study of dispersion phenomena within the urban canopy becomes a target of great interest. To this end, Computational Fluid Dynamics (CFD) can be successfully employed to predict turbulence and dispersion patterns, accounting for a detailed characterization of the pollutant sources, complex obstacles and atmospheric stability classes.Despite being intrinsically different phenomena, turbulence and dispersion are closely related. It is universally accepted that, to reach accurate prediction of the concentration field, it is necessary to properly reproduce the turbulence one. For this reason, the present PhD thesis is split into two main Sections: one focused on turbulence modelling and the subsequent, centered on the dispersion modelling.Thanks to its good compromise between accuracy of results and calculation time, Reynolds-averaged Navier-Stokes (RANS) still represents a valid alternative to more resource-demanding methods. However, focusing on the models’ performance in urban studies, Large Eddy Simulation (LES) generally outperforms RANS results, even if the former is at least one order of magnitude more expensive. Stemming from this consideration, the aim of this work is to propose a variety of approaches meant to solve some of the major limitations linked to standard RANS simulation and to further improve its accuracy in disturbed flow fields, without renouncing to its intrinsic feasibility. The proposed models are suitable for the urban context, being capable of automatically switching from a formulation proper for undisturbed flow fields to one suitable for disturbed areas. For neutral homogeneous atmospheric boundary layer (ABL), a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles and able to correctly represent the various roughness elements. Around obstacles, more performing closures are employed. The transition between the two treatments is achieved through the definition of a Building Influence Area (BIA). The finalgoal is to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.Focusing on the dispersion modelling framework, there exists a number of parameters which have to be properly specified. In particular, the definition of the turbulent Schmidt number Sct, expressing the ratio of turbulent viscosity to turbulent mass diffusivity, is imperative. Despite its relevance, the literature does not report a clear guideline on the definition of this quantity. Nevertheless, the importance of Sct with respect to dispersion is undoubted and further demonstrated in the works of different authors. For atmospheric boundary layer flows, typical constant values range between 0.2 and 1.3. As a matter of fact, the local variability of Sct is supported by experimental evidence and by direct numerical simulations (DNS). These observations further suggest that the turbulent Schmidt number should be prescribed as a dynamic variable. Following these observations a variable turbulent Schmidt number formulation is proposed in this work. The latter stems from the same hypothesis of the variable formulation developed by Gorlé et al. Moreover, the relevant uncertain model parameters are optimized through uncertainty quantification (UQ). This formulation further increased the accuracy of the predictions, and was successfully verified by Di Bernardino et al. However, the turbulent Schmidt number resulting from this formulation is still intrinsically linked to the turbulence model employed, i.e. to the Cμ coefficient. To overcome this constraint, the nature and the dependencies of Sct were further analyzed through correlation studies and employing principal component analysis (PCA) on data obtained through the proposed ABL RANS model. Subsequently, the same data-driven technique was employed based on the high-fidelity outcomes of a delayed Detached Eddy Simulation (dDES) to derive a generalized turbulentSchmidt number formulation. The latter can be employed within a wide range of turbulence models, without limiting its variability. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
30

Sea Breeze Circulation in the Auckland Region:Observational Data Analysis and NumericalModelling

Khan, Basit Ali January 2010 (has links)
The main aim of this research is to improve our knowledge of the sea breeze circulation in the complex coastal environments, where more than one mesoscale circulations occur. Interaction of these circulations with each other and with external factors such as topographical features and large scale winds leads to pronounced changes in the thermodynamic structure of the boundary layer. The variations in sea breeze circulation also have distinct effect on the pollutant transport and dispersion mechanisms in the coastal urban areas. In this research, dynamic and thermodynamic characteristics of the sea breeze circulation and their associated air pollution potential have been investigated by utilizing observational data for two summer periods and numerical modelling techniques. Effect of some external factors such as gradient flow and terrain elevation has also been examined. Observed meteorological and air quality data was obtained from a number of monitoring sites within and around Auckland while Advanced Weather Research & Forecasting (WRF) and ‘The Air Pollution Model’ (TAPM) were employed to simulate meteorology and pollutant dispersion in Auckland. WRF is used to investigate the thermally induced mesoscale circulation while TAPM has been employed to examine the pollutant dispersion in the region. Both models were validated against observed data from six different sites within Auckland. Validation results of WRF and TAPM are also compared with surface meteorology. Validation and inter-comparison of the two models show that WRF performed better than TAPM for all the surface meteorology variables. WRF showed a positive bias in predicted winds speed and relative humidity and a cold bias in the near surface Temperature. TAPM on the other hand under-predicted surface winds, while near surface temperature and relative humidity are similar to WRF. Results show that the sea breeze occurred around 20% of the two summer periods of 2006 and 2007. Both observed data analysis and the numerical modelling results confirmed the existence of two thermally induced systems in the Auckland region. Bay breezes are initiated in the morning hours (0800 – 1000 hours) from small bodies of water (Manukau, Waitemata, and Kaipara Harbour, and along the Hauraki Gulf coastline), followed by mature sea breezes from the main bodies of water (Tasman Sea and larger Hauraki Gulf area) in the late morning. The cessation of sea breezes started after 1600 hours. Frequency of sea breeze days was the highest under coast-parallel gradient winds (southeast and northwest), with speeds < 6 m s-1. The predicted depth of the sea breeze inflow ranged between 200 and 600 m, while the depth of the return flow was in the range of 200 – 500 m. Sensible heat flux is an important control in the development of sea breeze over the region. Coastal mountain ranges helped early onset of the sea breeze, but also inhibited inland propagation. Strong jet-like westerly winds along the coastline near the Manukau Harbour are due partly to the narrow opening at the Manukau Head, reduced friction over the harbour water, and divergence of wind due to coastline shape. Gradient winds significantly affect the evolution of the sea breeze and modify many of its dynamics, such as the sea breeze inflow layer, return flow, inland penetration, sea breeze head, etc. Under northerly gradient flow northeast sea breeze lasts longer while under southerly gradient flow cessation of the westerly sea breeze was delayed. Over both east and west coasts, WRF predicted anticlockwise rotation, especially under easterly gradient wind conditions. However, inland stations near Manukau Harbour show partial and complete clockwise rotation, which is primarily due to orographic features of the region. The diurnal rotation of the sea breeze system may contribute to recirculation of pollutants in the morning hours under coast-parallel gradient wind conditions. Pollutants that are emitted during morning peak traffic hours and advected towards Manukau Harbour by the remnants of the land breeze may be returned by bay breezes in the mid morning hours. Mixed layer height over land before arrival of the sea breeze also varied a lot and ranged between 600 to 1400 m. A convective internal boundary layer (CIBL) forms in the surface layer after arrival of the sea breeze. The CIBL under coast parallel gradient winds was relatively shallow (200 – 400 m), while under coasts-normal gradient winds (southwest and northeast), the predicted depth was in the range of 400 to 500 m. However, the inland extent of the CIBL was greater under coast-normal winds, especially under south-westerly gradient winds. The ground level concentration of air pollutants thus can be increased during sea breeze inflow over the region. Both bay breeze and mature sea breeze contribute towards development, extent and strength of the sea breeze convergence zones (SBCZs). Gradient winds and terrain play an important role in the position and strength of SBCZs. Under strong south-westerly gradient flow, a SBCZ is formed along the eastern coastline, while under north-easterly gradient winds a SBCZ is formed along the west coastline. During coast-parallel gradient winds the SBCZ is formed in the middle of landmass, and is then gradually displaced eastward or westward depending on the balance between large scale PGF and surface friction effect. In addition to SBCZs, terrain and coastline-induced convergences were also evident. Higher ground level concentrations of pollutants are expected under coast-normal gradient winds, when SBCZs are formed in the middle of the land mass and the wind speed of the sea breeze inflow and the sea breeze front is relatively low. This may increase pollution concentration, especially in the evening hours, to unacceptable levels. Results of this research suggest that given the size, synoptic meteorology and specific geography of the region, significant recirculation of pollutants is not likely to happen to contribute to next day’s pollution. The pollutant concentration may increase in the SBCZs, but their ability to recirculate the pollutants requires more extensive research. A closed sea breeze circulation cell is unlikely to form in this region due to topographical influences and a strong gradient wind effect. The pollutant plume is expected to be advected in the return flow over the peaks of higher terrain and via the top of the convergence zones, but its remixing in the onshore flow is subject to many factors such as gradient wind speed and direction, direction of the return flow and nature (size and state) of the pollutant. In appropriate conditions, pollution levels may reach to unhealthy levels under coast-parallel gradient wind condition.

Page generated in 0.1352 seconds