31 |
High-Performance Polymer Monoliths for Capillary Liquid ChromatographyAggarwal, Pankaj 29 July 2014 (has links) (PDF)
This dissertation focuses on improving the chromatographic efficiency of polymeric organic monoliths by characterizing and optimizing the bed morphology. In-situ characterization techniques such as capillary flow porometry (CFP), 3-dimensional scanning electron microscopy (3D SEM) and conductivity measurements were developed and implemented to quantitatively characterize the morphology of poly(ethylene glycol) diacrylate (PEGDA) monoliths. The CFP measurements for monoliths prepared by the same procedure in capillaries with different diameters (i.e., 75, 150, and 250 μm) clearly showed a change in average through-pore size with capillary diameter, thus, certifying the need for in-situ measurement techniques. Serial sectioning and imaging of PEGDA monoliths using 3D SEM gave quantitative information about the average pore size, porosity, radial heterogeneity and tortuosity of the monolith. Chromatographic efficiency was better for a monolith with smaller average pore size (i.e., 5.23 μm), porosity (i.e., 0.49), radial heterogeneity (i.e., 0.20) and tortuosity (i.e., 1.50) compared to another monolith with values of 5.90 μm, 0.59, 0.50 and 2.34, respectively. Other than providing information about monolith morphology, these techniques also aided in identifying factors governing morphological changes, such as capillary diameter, polymerization method, physical/chemical properties of the pre-polymer constituents and weight proportion of the same. A statistical model was developed for optimizing the weight proportion of pre-polymer constituents from their physical/chemical properties for improved chromatographic efficiency. Fabricated PEGDA columns were used for liquid chromatography of small molecules such as phenols, hydroxyl benzoic acids, and alkyl parabens. The chromatographic retention mechanism was determined to be principally reversed-phase (RP) with additional hydrogen bonding between the polar groups of the analytes and the ethylene oxide groups embedded in the monolith structure. The chromatographic efficiency measured for a non-retained compound (uracil) was 186,000 plates/m when corrected for injector dead volume. High resolution gradient separations of selected pharmaceutical compounds and phenylurea herbicides were achieved in less than 18 min. Column preparation was highly reproducible, with relative standard deviation (RSD) values less than 2.1%, based on retention times of the phenol standards (3 different columns). A further improvement in chromatographic performance was achieved for monoliths fabricated using a different polymerization method, i.e., living free-radical polymerization (LFRP). The columns gave an unprecedented column performance of 238, 000 plates/m for a non-retained compound under RP conditions.
|
32 |
Properties of Poly(ethylene glycol) Diacrylate Blends and Acoustically Focused Multilayered Biocomposites Developed for Tissue Engineering ApplicationsMazzoccoli, Jason Paul 05 June 2008 (has links)
No description available.
|
33 |
Engineering Poly(Ethylene Glycol) Hydrogel Scaffolds to Modulate Smooth Muscle Cell PhenotypeBeamish, Jeffrey Alan 03 August 2009 (has links)
No description available.
|
34 |
Fouling-resistant coating materials for water purificationWu, Yuan-hsuan 23 October 2009 (has links)
Membrane technology has been used in water purification for decades. However,
membrane fouling remains a limiting factor. One way to control fouling is through
surface modification. Several studies report that increasing surface hydrophilicity can
reduce membrane fouling. Surface modification via physical coating (i.e., thin-film
composite membrane) was explored in this research to prevent membrane fouling.
Before making thin-film composite membranes, it was important to study
structure/property relations in a series of potential coating materials. This research aims
to contribute to a better fundamental understanding of the structure/property relations
which govern water transport, rejection of model foulants (i.e., emulsified oil droplet or
protein), and fouling characteristics in hydrogels based on poly(ethylene glycol)
diacrylate (PEGDA) and N-vinyl-2-pyrrolidone (NVP).
Crosslinked poly(ethylene glycol) (PEG) free-standing films were prepared by
UV-induced photopolymerization of PEGDA crosslinker in the presence of varying
amounts of water or monofunctional poly(ethylene glycol) acrylate (PEGA). The crosslinked PEGDA films exhibited polymerization induced phase separation (PIPS)
when the water content of the prepolymerization mixture was greater than 60 wt%.
Visible light absorbance measurements, water uptake, water permeability, and salt kinetic
desorption experiments were used to characterize the structure of these phase-separated,
crosslinked hydrogels. The films with PIPS exhibited a porous morphology in cryogenic
scanning electron microscope (CryoSEM) studies. Dead-end filtration experiments using
deionized water and bovine serum albumin (BSA) solutions were performed to explore
the fundamental transport and fouling properties of these materials. The total flux of pure
water through the films after prior exposure to BSA solution was nearly equal to that of
the as-prepared material, indicating that these PEGDA films resist fouling by BSA under
the conditions studied.
Crosslinked NVP free-standing films were prepared by UV-induced
photopolymerization in the presence of water, with NVP as the monomer and
N,N’-methylenebisacrylamide (MBAA) as the crosslinker. A series of crosslinked films
were polymerized at various prepolymerization water contents, NVP/MBAA ratios and at
various levels of UV light intensity in the polymerization. Like PEGDA, the NVP films
also underwent phase-separation during polymerization. The influence of monomer/
crosslinker ratio, prepolymerization water content, and UV intensities on membrane
morphology and water transport was characterized with CryoSEM, bio-atomic force
microscope (Bio-AFM) and dead-end filtration. Molecular weight cutoff (MWCO)
measurements were used to characterize the sieving property of crosslinked NVP films
polymerized at different UV intensities. UV intensity was found to have an impact on the
interconnectivity of crosslinked membranes. Finally, tests of fouling resistance to protein solution (bovine serum albumin) and oily water emulsion were performed. The NVP
crosslinked films had good protein and oily water fouling resistance.
Overall, both crosslinked PEGDA and NVP films exhibit fouling resistance to
oily water emulsions or protein solution. NVP films had more porous structure and
higher water permeability than did PEGDA films, while the more compact structure of
PEGDA films led to better rejection of model foulants (e.g., protein) than in NVP films.
Based on different applications (e.g., oil/water separation, protein filtration), different
coating materials must be chosen according to the membrane morphology, transport
property, and rejection of model foulants to achieve the highest water flux and foulant rejection in membranes used for water purification. / text
|
35 |
Effect of network structure modifications on the light gas transport properties of cross-linked poly(ethylene oxide) membranesKusuma, Victor Armanda 03 February 2010 (has links)
Cross-linked poly(ethylene oxide) (XLPEO) based on poly(ethylene glycol) diacrylate (PEGDA) is an amorphous rubbery material with potential applications for carbon dioxide removal from mixtures with light gases such as methane, hydrogen, oxygen and nitrogen. Changing the polymer network structure of XLPEO through copolymerization has previously been shown to influence gas transport properties, which correlated with fractional free volume according to the Cohen-Turnbull model. This project explores strategic modifications of the cross-linked polymer structure and their effect on the chemical, physical and gas transport properties with an aim to develop rational, molecular-based design rules for tailoring separation performance. Experimental results from calorimetric and dynamic thermal analysis studies are presented, along with pure gas permeability and solubility obtained at 35°C. Incorporation of dangling side chains by copolymerization of PEGDA with methoxy-terminated poly(ethylene glycol) methyl ether acrylate, n=8 (PEGMEA) was previously shown to be effective in increasing fractional free volume of XLPEO through the opening of local free volume elements, which in turn increased CO₂ permeability. Through a comparative study ofshort chain analogs to these co-monomers, incorporation of an ethoxy-terminated co-monomer was shown to be more effective than a comparable methoxy-terminated co-monomer in increasing gas permeability. For instance, copolymerization of PEGDA with 71 wt% ethoxy-terminated diethylene glycol ethyl ether acrylate increased CO₂ permeability from 110 barrer to 320 barrer. Gas permeability increase was not observed when hydroxy or phenoxy-terminated pendants were introduced, which was attributed to reduction in chain mobility due to increased inter-chain chemical interactions or steric restrictions, respectively. Based on these results, incorporation of a co-monomer containing a bulky non-polar terminal group, tris-(trimethylsiloxy)silyl, was examined in order to further increase gas permeability. Addition of 80 wt% TRIS-A co-monomer increased CO₂ permeability of cross-linked PEGDA to 800 barrer. However, the resulting changes in chemical character of the copolymer reduced CO₂/light gas selectivity, even as gas permeability increased. The effect of incorporating a bulky, stiff functional group in the cross-linker chain was studied using cross-linked bisphenol-A ethoxylate diacrylate, which showed 40% increase in permeability compared to cross-linked PEGDA. This study affirmed the importance of polymer chain interaction, in addition to free volume, in determining the gas transport properties of the polymer. / text
|
36 |
Atmospheric Pressure Plasma Synthesis of Biocompatible Poly(ethylene glycol)-like CoatingsNisol, Bernard 26 May 2011 (has links)
The role of a protein-repelling coating is to limit the interaction between a device and its physiological environment. Plasma-polymerized-PEG (pp-PEG) surfaces are of great interest since they are known to avoid protein adsorption. and cell attachment. However, in all the studies previously published in the literature, the PEG coatings have been prepared using low pressure processes.
In this thesis, we synthesize biocompatible pp-PEG coatings using atmospheric pressure plasma. Two original methods are developed to obtain these pp-PEG films. 1. Atmospheric pressure plasma liquid deposition (APPLD) consists in the injection of the precursor, tetra(ethylene glycol)dimethylether (tetraglyme), by means of a liquid spray, directly in the post-discharge of an atmospheric argon plasma torch. 2. In atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD), tetraglyme vapors are brought in the post-discharge trough a heating sprinkler. The chemical composition, as well as the non-fouling properties of the APPLD and APPECVD films, are compared to those of PEG coatings synthesized by conventional low pressure plasma processes.
In the first part of the study, the effect of the power on the chemical composition of the films has been investigated by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS).
The surface analysis reveals that for the APPECVD samples, the fragmentation of the precursor increases as the power of the treatment is increased. In other terms, the lower the plasma power is, the higher the “PEG character” of the resulting films is. Indeed, the C-O component (286.5 eV) of the XPS C 1s peak is decreasing while the hydrocarbon component (285 eV) is increasing as the power of the plasma is increased. The same conclusion can be drawn from the signature ToF-SIMS peaks (m/z = 45 (CH3OCH2+ and +CH2CH2OH), 59 (CH3OCH2CH2+), 103 (CH3(OCH2CH2)2+)) that are decreasing in the case of high power treatments. Accordingly, IRRAS measurements show that the C-O stretching band is decreasing for high power plasma deposition. This is in agreement with the observations made from the analysis of the LP PECVD coatings and from the literature.
The films deposited by the APPLD process do not show the same behavior. Indeed, whatever the power injected into the discharge is, we are able to achieve films with a relatively high PEG character (83 %).
The second part of this study is dedicated to the evaluation of the non-fouling properties of the coatings by exposing them to proteins (bovine serum albumin and human fibrinogen) and cells (mouse fibroblasts (L929 and MEF)) and controlling the adsorption with XPS (proteins) and SEM (cells).
For the APPECVD samples, a low plasma power (30 W) leads to an important reduction of protein adsorption and cell adhesion (over 85%). However, higher-powered treatments tend to reduce the non-fouling ability of the surfaces (around 50% of reduction for a 80 W deposition).
The same order of magnitude (over 90% reduction of the adsorption) is obtained for the APPLD surfaces, whatever is the power of the treatment.
Those results show an important difference between the two processes in terms of power of the plasma treatment, and a strong relationship between the surface chemistry and the adsorption behavior: the more the PEG character is preserved, the more protein-repellent and cell-repellent is the surface. / Le rôle d’une couche empêchant l’adsorption de protéines est de limiter les interactions entre un implant et le milieu physiologique auquel il est exposé. Les films de poly(éthylène glycol) polymérisés par plasma (pp-PEG) sont d’intérêt majeur car ils sont connus pour empêcher l’adsorption de protéines ainsi que l’attachement cellulaire. Cependant, dans toutes les études publiées précédemment, les couches de type PEG ont été réalisées sous vide.
Dans cette thèse de doctorat, nous synthétisons des couches de type pp-PEG biocompatibles par plasmas à pression atmosphérique. A cette fin, deux méthodes originales ont été développées. 1. La première méthode consiste en l’injection du précurseur, le tetra(éthylène glycol) diméthyl éther (tetraglyme), en phase liquide, en nébulisant ce dernier au moyen d’un spray, directement dans la post-décharge d’une torche à plasma atmosphérique fonctionnant à l’argon. En anglais, nous appelons ce procédé « Atmospheric pressure plasma liquid deposition (APPLD) ». 2. Dans la deuxième méthode, appelée en anglais « Atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD)», le tetraglyme est amené en phase vapeur dans la post-décharge, au moyen d’un diffuseur chauffant. La composition chimique des dépôts de type APPLD et APPECVD, ainsi que leurs propriétés d’anti-adsorption sont évaluées, et comparées aux dépôts pp-PEG obtenus par les méthodes à basse pression conventionnelles.
Dans la première partie de cette étude, nous nous focalisons sur la composition chimique des films déposés, et plus particulièrement sur l’influence de la puissance injectée dans le plasma sur cette composition chimique. A cette fin, nous avons fait appel à des techniques d’analyse telles que la spectroscopie de réflexion-absorption infrarouge (IRRAS), la spectroscopie des photoélectrons X (XPS) et la spectrométrie de masse des ions secondaires (SIMS).
Il en ressort que les films de type APPECVD perdent progressivement leur « caractère PEG » à mesure que la puissance de la décharge plasma est élevée. Cela serait dû à une plus grande fragmentation du précurseur dans la post-décharge d’un plasma plus énergétique. Cette tendance est cohérente avec ce que nous avons observé pour les dépôts à basse pression ainsi que dans la littérature.
Dans le cas des films de type APPLD, un tel comportement n’a pas été mis en évidence : quelle que soit la puissance dissipée dans le plasma, les films présentent un « caractère PEG » relativement élevé.
La deuxième partie de cette thèse est dédiée à l’évaluation des propriétés d’anti-adsorption des films synthétisés, en les exposant à des protéines (albumine de sérum bovin et fibrinogène humain) et des cellules (fibroblastes de souris, L929 et MEF). L’adsorption de protéines est contrôlée par XPS tandis que l’attachement cellulaire est contrôlé par imagerie SEM.
Pour les échantillons de type APPECVD, un dépôt à faible puissance (30 W) mène à une importante réduction de l’adsorption de protéines et de cellules (> 85%) tandis qu’à de plus hautes puissances (80 W), l’anti-adsorption est sensiblement diminuée (50% de réduction). Dans le cas des dépôts de type APPLD, quelle que soit la puissance du plasma, une forte diminution de l’adsorption de protéines et de cellules est observée (> 90 %).
Ces résultats montrent une différence majeure entre les deux procédés quant à l’influence de la puissance du plasma ainsi qu’une forte relation entre la composition chimique de la surface synthétisée et son pouvoir d’anti-adsorption : plus le « caractère PEG » du dépôt est conservé, plus la surface empêchera l’interaction avec les protéines et les cellules.
|
37 |
Growth and Biofilm Formation by Staphylococcus Epidermidis and Other Relevant Contaminant Bacteria During Storage of Platelet ConcentratesGreco, Carey Anne 28 September 2011 (has links)
Coagulase negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet concentrates (PCs), and have been implicated in severe and fatal transfusion reactions. Of this group, Staphylococcus epidermidis is most frequently identified. The preliminary objective of this thesis was to confirm that S. epidermidis could form biofilms under platelet storage conditions. This was achieved using a modified crystal violet staining assay to detect plastic-adherent bacterial cells and examination of attachment processes by scanning electron microscopy. A collection of CoNS isolated from PCs obtained from reportedly healthy donors was then assessed for biofilm-forming potential at the genetic and phenotypic level. Despite the presumable commensal origin of these isolates, a high proportion of S. epidermidis strains displayed a biofilm positive phenotype.
The threat of S. epidermidis biofilm formation during platelet storage identified herein signifies that any alterations made to platelet storage protocols should be evaluated with consideration of this risk. The advent of platelet additive solutions (PASs) as an alternative to plasma for PC storage provides a relevant example, since little is known about the effect of PAS on contaminant bacteria, and vice versa. Growth and biofilm formation by S. epidermidis and the Gram-negative bacterium Serratia liquefaciens were measured in PAS- or plasma-PCs over 5 days, simulating standard platelet storage conditions, after initial inoculation with low, clinically relevant bacterial concentrations. Assays for platelet quality were performed simultaneously. Only S. liquefaciens exhibited a slower doubling time in plasma-PCs than in PAS-PCs. Biofilm formation by both species was reduced during storage in PAS-PCs, increasing bacteria availability for detection. Although S. liquefaciens adversely affected platelet quality in both media, S. epidermidis contamination did not. Ultimately, culture-based detection remains the earliest indicator of bacterial presence in PAS-PCs.
Lastly, since formation of platelet-bacteria aggregates is largely based on receptor-ligand interactions, it was postulated that biofilm formation by contaminant bacteria could be abrogated by receptor shielding. Methoxypoly(ethylene glycol) was applied to covalently modify the platelet surface using a process termed ‘PEGylation’. It is herein demonstrated that PEGylation of PCs inoculated with S. epidermidis results in significantly reduced bacterial binding and biofilm formation during platelet storage.
|
38 |
Growth and Biofilm Formation by Staphylococcus Epidermidis and Other Relevant Contaminant Bacteria During Storage of Platelet ConcentratesGreco, Carey Anne 28 September 2011 (has links)
Coagulase negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet concentrates (PCs), and have been implicated in severe and fatal transfusion reactions. Of this group, Staphylococcus epidermidis is most frequently identified. The preliminary objective of this thesis was to confirm that S. epidermidis could form biofilms under platelet storage conditions. This was achieved using a modified crystal violet staining assay to detect plastic-adherent bacterial cells and examination of attachment processes by scanning electron microscopy. A collection of CoNS isolated from PCs obtained from reportedly healthy donors was then assessed for biofilm-forming potential at the genetic and phenotypic level. Despite the presumable commensal origin of these isolates, a high proportion of S. epidermidis strains displayed a biofilm positive phenotype.
The threat of S. epidermidis biofilm formation during platelet storage identified herein signifies that any alterations made to platelet storage protocols should be evaluated with consideration of this risk. The advent of platelet additive solutions (PASs) as an alternative to plasma for PC storage provides a relevant example, since little is known about the effect of PAS on contaminant bacteria, and vice versa. Growth and biofilm formation by S. epidermidis and the Gram-negative bacterium Serratia liquefaciens were measured in PAS- or plasma-PCs over 5 days, simulating standard platelet storage conditions, after initial inoculation with low, clinically relevant bacterial concentrations. Assays for platelet quality were performed simultaneously. Only S. liquefaciens exhibited a slower doubling time in plasma-PCs than in PAS-PCs. Biofilm formation by both species was reduced during storage in PAS-PCs, increasing bacteria availability for detection. Although S. liquefaciens adversely affected platelet quality in both media, S. epidermidis contamination did not. Ultimately, culture-based detection remains the earliest indicator of bacterial presence in PAS-PCs.
Lastly, since formation of platelet-bacteria aggregates is largely based on receptor-ligand interactions, it was postulated that biofilm formation by contaminant bacteria could be abrogated by receptor shielding. Methoxypoly(ethylene glycol) was applied to covalently modify the platelet surface using a process termed ‘PEGylation’. It is herein demonstrated that PEGylation of PCs inoculated with S. epidermidis results in significantly reduced bacterial binding and biofilm formation during platelet storage.
|
39 |
The effects of tensile loading and extracellular environmental cues on fibroblastic differntiation and extracellular matrix production by mesenchymal stem cellsDoroski, Derek M. 22 March 2011 (has links)
Ligament/tendon tissue engineering has the potential to provide therapies that overcome the limitations of incomplete natural healing responses and inadequate graft materials. While ligament/tendon fibroblasts are an obvious choice of cell type for these applications, difficulties associated with finding a suitable cell source have limited their utility. Mesenchymal stem cells/marrow stromal cells (MSCs) are seen as a viable alternative since they can be harvested through routine medical procedures and can be differentiated toward a ligament/tendon fibroblast lineage. Further study is needed to create an optimal biomaterial/biomechanical environment for ligament/tendon fibroblastic differentiation of MSCs. The overall goal of this dissertation was to improve the understanding of the role that biomechanical stimulation and the biomaterial environment play, both independently and combined, on human MSC (hMSC) differentiation toward a ligament/tendon fibroblast phenotype. Specifically, the effects of cyclic tensile stimuli were studied in a biomaterial environment that provided controlled presentation of biological moieties. The influence of an enzymatically-degradable biomaterial environment on hMSC differentiation was investigated by creating biomaterials containing enzymatically-cleavable moieties. The role that preculture may play in tensile responses of hMSCs was also explored. Together, these studies provided insights into the contributions of the biomaterial and biomechanical environment to hMSC differentiation toward a ligament/tendon fibroblast phenotype.
|
40 |
Growth and Biofilm Formation by Staphylococcus Epidermidis and Other Relevant Contaminant Bacteria During Storage of Platelet ConcentratesGreco, Carey Anne 28 September 2011 (has links)
Coagulase negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet concentrates (PCs), and have been implicated in severe and fatal transfusion reactions. Of this group, Staphylococcus epidermidis is most frequently identified. The preliminary objective of this thesis was to confirm that S. epidermidis could form biofilms under platelet storage conditions. This was achieved using a modified crystal violet staining assay to detect plastic-adherent bacterial cells and examination of attachment processes by scanning electron microscopy. A collection of CoNS isolated from PCs obtained from reportedly healthy donors was then assessed for biofilm-forming potential at the genetic and phenotypic level. Despite the presumable commensal origin of these isolates, a high proportion of S. epidermidis strains displayed a biofilm positive phenotype.
The threat of S. epidermidis biofilm formation during platelet storage identified herein signifies that any alterations made to platelet storage protocols should be evaluated with consideration of this risk. The advent of platelet additive solutions (PASs) as an alternative to plasma for PC storage provides a relevant example, since little is known about the effect of PAS on contaminant bacteria, and vice versa. Growth and biofilm formation by S. epidermidis and the Gram-negative bacterium Serratia liquefaciens were measured in PAS- or plasma-PCs over 5 days, simulating standard platelet storage conditions, after initial inoculation with low, clinically relevant bacterial concentrations. Assays for platelet quality were performed simultaneously. Only S. liquefaciens exhibited a slower doubling time in plasma-PCs than in PAS-PCs. Biofilm formation by both species was reduced during storage in PAS-PCs, increasing bacteria availability for detection. Although S. liquefaciens adversely affected platelet quality in both media, S. epidermidis contamination did not. Ultimately, culture-based detection remains the earliest indicator of bacterial presence in PAS-PCs.
Lastly, since formation of platelet-bacteria aggregates is largely based on receptor-ligand interactions, it was postulated that biofilm formation by contaminant bacteria could be abrogated by receptor shielding. Methoxypoly(ethylene glycol) was applied to covalently modify the platelet surface using a process termed ‘PEGylation’. It is herein demonstrated that PEGylation of PCs inoculated with S. epidermidis results in significantly reduced bacterial binding and biofilm formation during platelet storage.
|
Page generated in 0.072 seconds