• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A structural study of lattices, d-lattices and some applications in data analysis / Une étude structurelle des treillis, d-treillis, et quelques applications en analyse de données

Kahn, Giacomo 12 December 2018 (has links)
Nous nous intéressons à un cadre théorique de l'analyse de données : l'analyse formelle de concepts. Le formalisme de l'analyse formelle de concepts permet d'exprimer les notions centrales de la fouille de données telles que les implications ou les ensembles fermés, avec au centre la notion de treillis qui décrit la structure et les relations que ces objets ont entre eux. Pour les données multidimensionnelles, une proposition de formalisme existe en tant que généralisation de l'analyse formelle de concepts : l'analyse polyadique de concepts. Dans cette thèse, nous étudions certains problèmes de combinatoire et d'algorithmique dans le cas de l'analyse polyadique de concepts. Nous approchons aussi un cadre plus appliqué à l'analyse de données en proposant des approches de navigation conceptuelle et de classification. / We are interested in formal concept analysis, a theoretical framework for data analysis.This formalism allows to express some central notions of data mining such as implications or closed itemsets, and is centered around lattices, as the description of the relational structure that those objects can have.For multidimensional data, a formalism exists as a generalisation of formal concept analysis : polyadic concept analysis.In this document, we study some combinatorial and algorithmic problems that arose in polyadic concept analysis.We also introduce more applied data analysis techniques of conceptual navigation and classification.
2

Conception de biosenseurs fluorescents multicolores pour l'identification in vivo des interactions bio-physicochimiques dans les systèmes minéral-bactérie / Multicolour whole-cell bacterial sensors for in vivo identification of bio-physicochemical interactions in mineral-bacteria systems

Parrello, Damien 05 December 2014 (has links)
Le monitoring des écosystèmes terrestres nécessite une connaissance approfondie des interactions entre microorganismes, minéraux et métaux dans les sols. Afin d'évaluer in vivo la disponibilité de métaux tel que le fer dans des systèmes bactéries-minéraux, une approche basée sur l’utilisation de biosenseurs bactériens fluorescents et d’une analyse spectroscopique non-invasive a été explorée. Ce travail a notamment conduit à la construction chez Pseudomonas aeruginosa de fusions génétiques couplant des promoteurs régulés par le fer à des rapporteurs fluorescents multicolores. Les souches obtenues ont été utilisées comme senseur de la disponibilité du fer constitutif de différents minéraux (Nontronites). La réponse de ces biosenseurs bactériens a été étudiée en couplant la spectroscopie de fluorescence à balayage synchrone (SFS) à la décomposition canonique polyadique Candecomp / Parafac (CP). Avec des plans d’expérience privilégiant la diversité des réponses, le couplage SFS-CP garantit une estimation conjointe et rapide de l’expression de plusieurs promoteurs d’intérêts, y compris dans des milieux auto-fluorescents. Cette méthode originale permet, entre autres, de s’affranchir des problèmes liés aux recouvrements spectraux des protéines fluorescentes et fournit une estimation robuste et précise de la réponse des biosenseurs. Appliquée à d’autres plans d’expériences, elle démontre également que la bio-dissolution des nontronites par P. aeruginosa est assurée par la production de sidérophores et contrôlée par la cristallochimie des feuillets des smectites, notamment par la distribution des atomes de fer(III) entre les tétraèdres et les octaèdres / Monitoring terrestrial ecosystems requires a better understanding of the interactions between microorganisms, minerals and metals in the environment. To assess in vivo availability of metals such as iron in bacteria-mineral system, an approach based on whole-cell fluorescent biosensors and non-invasive spectroscopy was explored. This work led to the construction in Pseudomonas aeruginosa of a set of gene fusions coupling iron-regulated promoters to multicolour fluorescent reporters. The recombinant strains were used as sensors of structural iron availability in nontronites NAu-1 and NAu-2. The response of these biosensors was studied by coupling synchronous fluorescence spectroscopy (SFS) with canonical polyadic Candecomp/Parafac (CP) decomposition. On the basis of experimental designs favouring response diversity, the coupled SFS-CP method guarantees a joint estimate of gene expression from multiple promoters, even in highly fluorescent media. This novel method can solve the issue of spectral bleed-through of fluorescent proteins and provides a means to integrate multiple signals from combinations of whole-cell fluorescent bioreporters. In addition, we could show using SFS-CP that P. aeruginosa indirectly mobilize Fe(III) from nontronites primarily through the production of pyoverdine siderophore. The structural Fe(III) present on the edges of NAu-2 rather than NAu-1 particles appears to be more bioaccessible, suggesting that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs the solubilization process
3

Algorithmes de diagonalisation conjointe par similitude pour la décomposition canonique polyadique de tenseurs : applications en séparation de sources / Joint diagonalization by similarity algorithms for the canonical polyadic decomposition of tensors : Applications in blind source separation

André, Rémi 07 September 2018 (has links)
Cette thèse présente de nouveaux algorithmes de diagonalisation conjointe par similitude. Cesalgorithmes permettent, entre autres, de résoudre le problème de décomposition canonique polyadiquede tenseurs. Cette décomposition est particulièrement utilisée dans les problèmes deséparation de sources. L’utilisation de la diagonalisation conjointe par similitude permet de paliercertains problèmes dont les autres types de méthode de décomposition canonique polyadiquesouffrent, tels que le taux de convergence, la sensibilité à la surestimation du nombre de facteurset la sensibilité aux facteurs corrélés. Les algorithmes de diagonalisation conjointe par similitudetraitant des données complexes donnent soit de bons résultats lorsque le niveau de bruit est faible,soit sont plus robustes au bruit mais ont un coût calcul élevé. Nous proposons donc en premierlieu des algorithmes de diagonalisation conjointe par similitude traitant les données réelles etcomplexes de la même manière. Par ailleurs, dans plusieurs applications, les matrices facteursde la décomposition canonique polyadique contiennent des éléments exclusivement non-négatifs.Prendre en compte cette contrainte de non-négativité permet de rendre les algorithmes de décompositioncanonique polyadique plus robustes à la surestimation du nombre de facteurs ou lorsqueces derniers ont un haut degré de corrélation. Nous proposons donc aussi des algorithmes dediagonalisation conjointe par similitude exploitant cette contrainte. Les simulations numériquesproposées montrent que le premier type d’algorithmes développés améliore l’estimation des paramètresinconnus et diminue le coût de calcul. Les simulations numériques montrent aussi queles algorithmes avec contrainte de non-négativité améliorent l’estimation des matrices facteurslorsque leurs colonnes ont un haut degré de corrélation. Enfin, nos résultats sont validés à traversdeux applications de séparation de sources en télécommunications numériques et en spectroscopiede fluorescence. / This thesis introduces new joint eigenvalue decomposition algorithms. These algorithms allowamongst others to solve the canonical polyadic decomposition problem. This decomposition iswidely used for blind source separation. Using the joint eigenvalue decomposition to solve thecanonical polyadic decomposition problem allows to avoid some problems whose the others canonicalpolyadic decomposition algorithms generally suffer, such as the convergence rate, theoverfactoring sensibility and the correlated factors sensibility. The joint eigenvalue decompositionalgorithms dealing with complex data give either good results when the noise power is low, orthey are robust to the noise power but have a high numerical cost. Therefore, we first proposealgorithms equally dealing with real and complex. Moreover, in some applications, factor matricesof the canonical polyadic decomposition contain only nonnegative values. Taking this constraintinto account makes the algorithms more robust to the overfactoring and to the correlated factors.Therefore, we also offer joint eigenvalue decomposition algorithms taking advantage of thisnonnegativity constraint. Suggested numerical simulations show that the first developed algorithmsimprove the estimation accuracy and reduce the numerical cost in the case of complexdata. Our numerical simulations also highlight the fact that our nonnegative joint eigenvaluedecomposition algorithms improve the factor matrices estimation when their columns have ahigh correlation degree. Eventually, we successfully applied our algorithms to two blind sourceseparation problems : one concerning numerical telecommunications and the other concerningfluorescence spectroscopy.
4

Identification aveugle de mélanges et décomposition canonique de tenseurs : application à l'analyse de l'eau

Royer, Jean-Philip 04 October 2013 (has links) (PDF)
Dans cette thèse, nous nous focalisons sur le problème de la décomposition polyadique minimale de tenseurs de dimension trois, problème auquel on se réfère généralement sous différentes terminologies : " Polyadique Canonique " (CP en anglais), " CanDecomp ", ou encore " Parafac ". Cette décomposition s'avère très utile dans un très large panel d'applications. Cependant, nous nous concentrons ici sur la spectroscopie de fluorescence appliquée à des données environnementales particulières de type échantillons d'eau qui pourront avoir été collectés en divers endroits ou différents moments. Ils contiennent un mélange de plusieurs molécules organiques et l'objectif des traitements numériques mis en œuvre est de parvenir à séparer et à ré-estimer ces composés présents dans les échantillons étudiés. Par ailleurs, dans plusieurs applications comme l'imagerie hyperspectrale ou justement, la chimiométrie, il est intéressant de contraindre les matrices de facteurs recherchées à être réelles et non négatives car elles sont représentatives de quantités physiques réelles non négatives (spectres, fractions d'abondance, concentrations, ...etc.). C'est pourquoi tous les algorithmes développés durant cette thèse l'ont été dans ce cadre (l'avantage majeur de cette contrainte étant de rendre le problème d'approximation considéré bien posé). Certains de ces algorithmes reposent sur l'utilisation de méthodes proches des fonctions barrières, d'autres approches consistent à paramétrer directement les matrices de facteurs recherchées par des carrés.
5

Identification aveugle de mélanges et décomposition canonique de tenseurs : application à l'analyse de l'eau / Blind identification of mixtures and canonical tensor decomposition : application to wateranalysis

Royer, Jean-Philip 04 October 2013 (has links)
Dans cette thèse, nous nous focalisons sur le problème de la décomposition polyadique minimale de tenseurs de dimension trois, problème auquel on se réfère généralement sous différentes terminologies : « Polyadique Canonique » (CP en anglais), « CanDecomp », ou encore « Parafac ». Cette décomposition s'avère très utile dans un très large panel d'applications. Cependant, nous nous concentrons ici sur la spectroscopie de fluorescence appliquée à des données environnementales particulières de type échantillons d'eau qui pourront avoir été collectés en divers endroits ou différents moments. Ils contiennent un mélange de plusieurs molécules organiques et l'objectif des traitements numériques mis en œuvre est de parvenir à séparer et à ré-estimer ces composés présents dans les échantillons étudiés. Par ailleurs, dans plusieurs applications comme l'imagerie hyperspectrale ou justement, la chimiométrie, il est intéressant de contraindre les matrices de facteurs recherchées à être réelles et non négatives car elles sont représentatives de quantités physiques réelles non négatives (spectres, fractions d'abondance, concentrations, ...etc.). C'est pourquoi tous les algorithmes développés durant cette thèse l'ont été dans ce cadre (l'avantage majeur de cette contrainte étant de rendre le problème d'approximation considéré bien posé). Certains de ces algorithmes reposent sur l'utilisation de méthodes proches des fonctions barrières, d'autres approches consistent à paramétrer directement les matrices de facteurs recherchées par des carrés. / In this manuscript, we focus on the minimal polyadic decomposition of third order tensors, which is often referred to: “Canonical Polyadic” (CP), “CanDecomp”, or “Parafac”. This decomposition is useful in a very wide panel of applications. However, here, we only address the problem of fluorescence spectroscopy applied to environment data collected in different locations or times. They contain a mixing of several organic components and the goal of the used processing is to separate and estimate these components present in the considered samples. Moreover, in some applications like hyperspectral unmixing or chemometrics, it is useful to constrain the wanted loading matrices to be real and nonnegative, because they represent nonnegative physical data (spectra, abundance fractions, concentrations, etc...). That is the reason why all the algorithms developed here take into account this constraint (the main advantage is to turn the approximation problem into a well-posed one). Some of them rely on methods close to barrier functions, others consist in a parameterization of the loading matrices with the help of squares. Many optimization algorithms were considered: gradient approaches, nonlinear conjugate gradient, that fits well with big dimension problems, Quasi-Newton (BGFS and DFP) and finally Levenberg-Marquardt. Two versions of these algorithms have been considered: “Enhanced Line Search” version (ELS, enabling to escape from local minima) and the “backtracking” version (alternating with ELS).
6

Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible / Estimation of structured tensor models and recovery of low-rank tensors

Goulart, José Henrique De Morais 15 December 2016 (has links)
Dans la première partie de cette thèse, on formule deux méthodes pour le calcul d'une décomposition polyadique canonique avec facteurs matriciels linéairement structurés (tels que des facteurs de Toeplitz ou en bande): un algorithme de moindres carrés alternés contraint (CALS) et une solution algébrique dans le cas où tous les facteurs sont circulants. Des versions exacte et approchée de la première méthode sont étudiées. La deuxième méthode fait appel à la transformée de Fourier multidimensionnelle du tenseur considéré, ce qui conduit à la résolution d'un système d'équations monomiales homogènes. Nos simulations montrent que la combinaison de ces approches fournit un estimateur statistiquement efficace, ce qui reste vrai pour d'autres combinaisons de CALS dans des scénarios impliquant des facteurs non-circulants. La seconde partie de la thèse porte sur la récupération de tenseurs de rang faible et, en particulier, sur le problème de reconstruction tensorielle (TC). On propose un algorithme efficace, noté SeMPIHT, qui emploie des projections séquentiellement optimales par mode comme opérateur de seuillage dur. Une borne de performance est dérivée sous des conditions d'isométrie restreinte habituelles, ce qui fournit des bornes d'échantillonnage sous-optimales. Cependant, nos simulations suggèrent que SeMPIHT obéit à des bornes optimales pour des mesures Gaussiennes. Des heuristiques de sélection du pas et d'augmentation graduelle du rang sont aussi élaborées dans le but d'améliorer sa performance. On propose aussi un schéma d'imputation pour TC basé sur un seuillage doux du coeur du modèle de Tucker et son utilité est illustrée avec des données réelles de trafic routier / In the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation

Page generated in 0.0578 seconds