• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desigualdades universais para autovalores do operador poli-harmônico / Universal bounds for eigenvalues of the polyharmonic operator

PEREIRA, Rosane Gomes 09 March 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:20Z (GMT). No. of bitstreams: 1 Rosane Gomes Pereira.pdf: 525845 bytes, checksum: 76abe0b472d0e4b44a4d3197912958d3 (MD5) Previous issue date: 2012-03-09 / In this work, we study eigenvalues of polyharmonic operators on compact Riemannian manifolds with boundary (possibly empty). Here, we bring in a universal inequality for the eigenvalues of the polyharmonic operator on compact domains in an Euclidean space Rn. This inequality controls the kth eigenvalue by the lower eigenvalues, independently of the particular geometry of the domain. Besides, a inequality we present covers the important Yang inequality on eigenvalues of the Dirichlet Laplacian. Finally, we introduce universal inequalities for eigenvalues of polyharmonic operator on compact domains in a unit n-sphere Sn. NOTE: Programs do not copy or copy errors with certain symbols, formulas, formatting, etc ..., n of Rn and Sn are overwritten. View all content by clicking pdf - dissertation at the bottom of the screen. / Neste trabalho, estudamos autovalores do operador poli-harmônico em variedades Riemannianas compactas com fronteira ( possivelmente vazia ). Aqui, apresentamos uma desigualdade universal para os autovalores do operador poliharmônico em domínios compactos no Espaço Euclidiano Rn. Esta desigualdade controla o k-ésimo autovalor pelos autovalores menores, independentemente da geometria particular do domínio. Além disso, a desigualdade que apresentamos cobre a importante desigualdade de Yang em autovalores do Laplaciano de Dirichlet. Finalmente, apresentamos desigualdades universais para autovalores do operador poli-harmônico em domínios compactos na esfera unitária n- dimensional Sn. OBS: Programas não copiam ou copiam com erros certos símbolos, fórmulas, formatações etc..., o n de Rn e Sn está sobrescrito. Visualize todo conteúdo clicando pdf - dissertação na parte de baixo da tela.
2

Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse / Study of solutions of some nonlinear partial differential equations via the Morse index

Mtiri, Foued 25 November 2016 (has links)
Cette thèse porte principalement sur l'étude des solutions de certaines équations aux dérivées partielles elliptiques via l'indice de Morse, y compris des solutions stables, i.e. quand l'indice de Morse est égal à zéro. Elle comporte deux parties indépendantes.Dans la première partie, sous des hypothèses sur-linéaires et sous-critiques sur f, on établit d'abord une estimation explicite de la norme L [infini] des solutions de -Δu = f(u) avec u = 0 sur le bord, via leurs indices de Morse. On propose une approche plus transparente et plus souple que le travail de Yang [1998], ce qui nous permet de traiter des non linéarités très proches de la croissance critique. Les résultats obtenus nous ont motivé de travailler sur des équations polyharmoniques (-Δ)ku = f(x; u) avec notamment k = 2 et 3. Avec des hypothèses semblables à Yang [1998] sur f et des conditions au bord convenables, on obtient pour la première fois des estimations explicites de solution des équations polyhamoniques, via l'indice de Morse. Dans la seconde partie, on considère un système de Lane-Emden-Δu = ρ(x)vp; -Δv = ρ(x)u θ ; u; v > 0; dans RN; avec 1 < p< θ et un poids radial ρ strictement positif. Nous montrons la non-existence de solution stable en petites dimensions N. Nos résultats améliorent les travaux précédents de Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], et fournissent notamment des résultats du type Liouville pour solution stable, en petites dimensions N, valables pour tout 1 < ρ min(4 3 ; θ) / The main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)
3

Obten??o dos par?metros-x de estruturas planares

Nascimento, Pedro Ivo de Araujo do 11 December 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:12Z (GMT). No. of bitstreams: 1 PedroIAN_DISSERT.pdf: 1986241 bytes, checksum: 386b7b9f50f9765c6f2575f4e58ea4e5 (MD5) Previous issue date: 2012-12-11 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Due to major progress of communication system in the last decades, need for more precise characterization of used components. The S-parameters modeling has been used to characterization, simulation and test of communication system. However, limitation of S-parameters to model nonlinear system has created new modeling systems that include the nonlinear characteristics. The polyharmonic distortion modeling is a characterizationg technique for nonlinear systems that has been growing up due to praticity and similarity with S-parameters. This work presents analysis the polyharmonic distortion modeling, the test bench development for simulation of planar structure and planar structure characterization with X-parameters / O grande desenvolvimento dos sistemas de comunica??o nas ?ltimas d?cadas trouxe a necessidade de uma caracteriza??o cada vez mais precisa dos componentes utilizados. A modelagem por meio de par?metros-S ? utilizada para caracteriza??o, simula??o e testes de sistemas de comunica??o desde meados dos anos 60. Contudo a limita??o dos par?metros-S para sistemas lineares fez crescer a necessidade por novos tipos de parametriza??es que incluam as caracter?sticas de sistemas n?o lineares. A modelagem por distor??o poli-harm?nica ? uma t?cnica de caracteriza??o aplicada a sistemas n?o lineares que vem ganhando espa?o na literatura por sua praticidade e semelhan?a conceitual com os par?metros-S. Este trabalho apresentar? uma an?lise da modelagem por distor??o harm?nica, o desenvolvimento de um banco de testes para simula??o de estruturas planares e a caracteriza??o destas estruturas por meio de par?metros-X. Com isso pretende-se analisar a utiliza??o, precis?o e efici?ncia da modelagem por distor??o poli-harm?nica para estruturas planares

Page generated in 0.0317 seconds