• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the kernel of the symbol map for multiple polylogarithms

Rhodes, John Richard January 2012 (has links)
The symbol map (of Goncharov) takes multiple polylogarithms to a tensor product space where calculations are easier, but where important differential and combinatorial properties of the multiple polylogarithm are retained. Finding linear combinations of multiple polylogarithms in the kernel of the symbol map is an effective way to attempt finding functional equations. We present and utilise methods for finding new linear combinations of multiple polylogarithms (and specifically harmonic polylogarithms) that lie in the kernel of the symbol map. During this process we introduce a new pictorial construction for calculating the symbol, namely the hook-arrow tree, which can be used to easier encode symbol calculations onto a computer. We also show how the hook-arrow tree can simplify symbol calculations where the depth of a multiple polylogarithm is lower than its weight and give explicit expressions for the symbol of depth 2 and 3 multiple polylogarithms of any weight. Using this we give the full symbol for I_{2,2,2}(x,y,z). Through similar methods we also give the full symbol of coloured multiple zeta values. We provide introductory material including the binary tree (of Goncharov) and the polygon dissection (of Gangl, Goncharov and Levin) methods of finding the symbol of a multiple polylogarithm, and give bijections between (adapted forms of) these methods and the hook-arrow tree.
2

AN ENHANCEMENT OF THE ZAGIER CONJECTURE / Zagier予想の精密化について

Satou, Nobuo 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20155号 / 理博第4240号 / 新制||理||1610(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 池田 保, 教授 雪江 明彦, 准教授 伊藤 哲史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
3

Polylogarithmes et mesure de Mahler

Gu, Jarry 09 1900 (has links)
Le but principal de ce mémoire est de calculer la mesure de Mahler logarithmique d’une famille de polynômes à trois variables x^n + 1 + (x^(n−1) + 1)y + (x − 1)z. Pour réaliser cet objectif, on intègre des régulateurs définis sur des complexes motiviques polylogarithmiques. Pour comprendre ces régulateurs, on explore les propriétés des polylogarithmes et démontre quelques identités polylogarithmiques. Ensuite, on utilise les régulateurs afin de simplifier l’intégrante. Notre résultat est une formule qui relie la mesure de Mahler de la famille de polynômes susmentionnée au dilogarithme de Bloch–Wigner et à la fonction zêta de Riemann. / The main purpose of this thesis is to compute the logarithmic Mahler measure of the three variable polynomial family xn + 1 + (xn−1 + 1)y + (x − 1)z. In order to accomplish this, we integrate regulators defined on polylogarithmic motivic complexes. To understand these regulators, we explore the properties of polylogarithms and show some polylogarithmic identities. The regulators are then applied to simplify the integrand. Our result is a formula relating the Mahler measure of the family of polynomials to the Bloch–Wigner Dilogarithm and the Riemann zeta function.
4

Periods of the motivic fundamental groupoid of P1\{0, μN,∞} / Périodes du groupe fondamental motivique de la droite projective moins zero, l’infini et les racines n-èmes de l’unité

Glanois, Claire 06 January 2016 (has links)
En s'inspirant du point de vue adopté par Francis Brown, nous examinons la structure d'algèbre de Hopf des multizêtas motiviques cyclotomiques, qui sont des périodes motiviques du groupoïde fondamental de la droite projective moins 0, l'infini et les racines Nèmes de l'unité. Par application d'un morphisme période surjectif (conjecturé isomorphisme), nous pouvons déduire des résultats (identités, familles génératrices, etc.) sur les multizêtas cyclotomiques (complexes). La coaction de cette algèbre de Hopf (formule combinatoire explicite) est duale à l'action d'un dénommé groupe de Galois motivique sur ces périodes motiviques. Ces recherches sont ainsi motivées par l'espoir d'une théorie de Galois pour les périodes, étendant la théorie de Galois usuelle pour les nombres algébriques. (i) Nous présentons de nouvelles relations entre les sommes d'Euler (N=2) motiviques et deux nouvelles bases (conjecturées identiques) pour les multizêtas motiviques (N=1): Hoffman star (sous une conjecture analytique) et une seconde via les sommes d'Euler motiviques. (ii) Nous appliquons des idées de descentes galoisiennes à l'étude de ces périodes, en regardant notamment comment les multizêtas motiviques relatifs aux racines N' èmes de l'unité se plongent dans ceux associés aux racines Nèmes, lorsque N' divise N. Après avoir fourni des critères généraux, nous nous tournons vers les cas N égal à 2,3,4,6, 8, pour lesquels le groupoïde fondamental motivique engendre la catégorie des motifs de Tate mixtes sur l'anneau des entiers du Nème corps cyclotomique ramifié en N (non ramifié pour 6). Pour ces valeurs, nous explicitons les descentes galoisiennes, et étendons les résultats de Pierre Deligne / Following F. Brown's point of view, we look at the Hopf algebra structure of motivic cyclotomic multiple zeta values, which are motivic periods of the fundamental groupoid of the projective line minus 0, infinity and N roots of unity. By application of a surjective period map (conjectured isomorphism), we deduce results (generating families, identities, etc.) on cyclotomic multiple zeta values, which are complex numbers. The coaction of this Hopf algebra (explicit combinatorial formula) is the dual of the action of a so-called motivic Galois group on these specific motivic periods. This entire study was motivated by the hope of a Galois theory for periods, which should extend the usual one for algebraic numbers.(i)In the first part, we focus on the case of motivic multiple zeta values (N = 1) and Euler sums (N = 2). In particular, we present new bases for motivic multiple zeta values: one via motivic Euler sums, and another (depending on an analytic conjecture) which is known as the Hoffman star basis; under a general motivic identity that we conjecture, these bases are identical.
(ii)In the second part, we apply some Galois descents ideas to the study of these periods, and examine how multiple zeta values relative to N' roots of unity are embedded into those relative to N roots, when N' divide N. After giving some general criteria for any N, we focus on the cases N=2,3,4, 6, 8, for which the motivic fundamental group generates the category of mixed Tate motives on the ring of integer of the N cyclotomic field ramified in N (unramified if N=6). For those N, we are able to construct Galois descents explicitly, and extend P. Deligne's results.
5

Formes effectives de la conjecture de Manin-Mumford et réalisations du polylogarithme abélien / Effective forms of the Manin-Mumford conjecture and realisations of the abelian polylogarithm

Scarponi, Danny 15 September 2016 (has links)
Dans cette thèse nous étudions deux problèmes dans le domaine de la géométrie arithmétique, concernant respectivement les points de torsion des variétés abéliennes et le polylogarithme motivique sur les schémas abéliens. La conjecture de Manin-Mumford (démontrée par Raynaud en 1983) affirme que si A est une variété abélienne et X est une sous-variété de A ne contenant aucune translatée d'une sous-variété abélienne de A, alors X ne contient qu'un nombre fini de points de torsion de A. En 1996, Buium présenta une forme effective de la conjecture dans le cas des courbes. Dans cette thèse, nous montrons que l'argument de Buium peut être utilisé aussi en dimension supérieure pour prouver une version quantitative de la conjecture pour une classe de sous-variétés avec fibré cotangent ample étudiée par Debarre. Nous généralisons aussi à toute dimension un résultat sur la dispersion des relèvements p-divisibles non ramifiés obtenu par Raynaud dans le cas des courbes. En 2014, Kings and Roessler ont montré que la réalisation en cohomologie de Deligne analytique de la part de degré zéro du polylogarithme motivique sur les schémas abéliens peut être reliée aux formes de torsion analytique de Bismut-Koehler du fibré de Poincaré. Dans cette thèse, nous utilisons la théorie de l'intersection arithmétique dans la version de Burgos pour raffiner ce résultat dans le cas où la base du schéma abélien est propre. / In this thesis we approach two independent problems in the field of arithmetic geometry, one regarding the torsion points of abelian varieties and the other the motivic polylogarithm on abelian schemes. The Manin-Mumford conjecture (proved by Raynaud in 1983) states that if A is an abelian variety and X is a subvariety of A not containing any translate of an abelian subvariety of A, then X can only have a finite number of points that are of finite order in A. In 1996, Buium presented an effective form of the conjecture in the case of curves. In this thesis, we show that Buium's argument can be made applicable in higher dimensions to prove a quantitative version of the conjecture for a class of subvarieties with ample cotangent studied by Debarre. Our proof also generalizes to any dimension a result on the sparsity of p-divisible unramified liftings obtained by Raynaud in the case of curves. In 2014, Kings and Roessler showed that the realisation in analytic Deligne cohomology of the degree zero part of the motivic polylogarithm on abelian schemes can be described in terms of the Bismut-Koehler higher analytic torsion form of the Poincaré bundle. In this thesis, using the arithmetic intersection theory in the sense of Burgos, we give a refinement of Kings and Roessler's result in the case in which the base of the abelian scheme is proper.
6

Counting prime polynomials and measuring complexity and similarity of information

Rebenich, Niko 02 May 2016 (has links)
This dissertation explores an analogue of the prime number theorem for polynomials over finite fields as well as its connection to the necklace factorization algorithm T-transform and the string complexity measure T-complexity. Specifically, a precise asymptotic expansion for the prime polynomial counting function is derived. The approximation given is more accurate than previous results in the literature while requiring very little computational effort. In this context asymptotic series expansions for Lerch transcendent, Eulerian polynomials, truncated polylogarithm, and polylogarithms of negative integer order are also provided. The expansion formulas developed are general and have applications in numerous areas other than the enumeration of prime polynomials. A bijection between the equivalence classes of aperiodic necklaces and monic prime polynomials is utilized to derive an asymptotic bound on the maximal T-complexity value of a string. Furthermore, the statistical behaviour of uniform random sequences that are factored via the T-transform are investigated, and an accurate probabilistic model for short necklace factors is presented. Finally, a T-complexity based conditional string complexity measure is proposed and used to define the normalized T-complexity distance that measures similarity between strings. The T-complexity distance is proven to not be a metric. However, the measure can be computed in linear time and space making it a suitable choice for large data sets. / Graduate / 0544 0984 0405 / nrebenich@gmail.com

Page generated in 0.0571 seconds