Spelling suggestions: "subject:"polymére"" "subject:"polymérases""
1 |
Nanomécanismes de déformation des polymères semi-cristallins : étude in situ par microscopie à force atomique et modélisation / Nano-scale deformation mechanisms in semi-crystallin polymers : in situ atomic force microscopy study and modelingDétrez, Fabrice 03 December 2008 (has links)
Les mécanismes de déformation de trois polymères semi-cristallins à morphologie sphérolitiques ont été étudiés par microscopie à force atomique in situ à l'aide d'une machine de traction. Le polyamide 6, le polybutène et le polycaprolactone utilisés lors de cette étude se déforment tous par fragmentation lamellaire. Des micro-craquelures ont également été observées dans le polybutène. Ces deux mécanismes s'amorcent dès la fin du domaine élastique. Ils sont tous deux à l'origine d'une déformation permanente et d'une dégradation des propriétés mécaniques. Ces constations expérimentales ont conduit à l'hypothèse d'un couplage entre plasticité et endommagement. Après avoir identifié la contribution visqueuse pour chaque matériau, l'endommagement et la déformation plastique ont été mesurés par des essais de traction charge/décharge. Il s'est avéré que dans les trois matériaux de l'étude, l'évolution du dommage en fonction de la déformation plastique suit une unique loi malgré les nombreuses différences structurales (épaisseur des lamelles, diamètres des sphérolites, température de transition vitreuse ... ). Une loi de comportement a été établie d'une part sur le concept qu'un polymère semi-cristallin est constitué d'un réseau macromoléculaire bridé par la structure cristalline et d'autre part de la constatation que la destruction de la structure cristalline induit un endommagement régi par la loi précédemment identifiée. Cette loi a été implémentée dans un code de calcul éléments finis. Elle permet de reproduire très convenablement les essais de traction monotones et cycliques de l'étude et de prédire le comportement en relaxation des polymères semi-cristallins. / The aim of this work is to study the nano-scale deformation mechanisms within the spherulitic structure of semi-crystalline polymers. The deformation mechanisms are imaged by atomic force microscopy. The originality of this work is the use of a home-made tensile drawing stage under the AFM head in order to perform in situ tensile tests. The observations performed on several semi-crystalline polymers (polyamide 6, polybutene, polycaprolactone) revealed fragmentation of crystalline lamellae and micro-crazing. These mechanisms appear from the end of elastic stage, and induce permanent deformation and degradation of mechanical properties. These experimental observations enable assuming that there is a coupling between plasticity and damage. The viscous contribution is first identified, then subtracted from the data of cyclic tensile tests in order to assess the damage and the plastic deformation. The damage evolution follows the same law for the various materials in spite of their large structural differences (lamellar thickness, spherulite diameter, glass transition temperature ... ). The mechanical behavior modeling based on the concept that the semi-crystalline polymers consist of a macromolecular network flanged by the crystalline structure. The behavior law has been developed with this concept including the damage law previously identified. This law has been implemented in a finite element program. Good fits of the experimental monotonic and cyclic tensile tests have been obtained together with fairly good predictions of the relaxation behavior of three studied materials.
|
2 |
Elaboration d’actionneurs et capteurs polymères et intégration dans des systèmes de perceptions biomimétiques / Conducting interpenetrating polymer network actuator sensor for biomimetic perception systemFestin, Nicolas 19 December 2012 (has links)
Depuis de nombreuses années des chercheurs imitent le vivant afin d'obtenir des systèmes capables de s'adapter à des environnements de plus en plus complexes. Aujourd'hui aucune des technologies classiques n'est capable de rivaliser complètement avec le fonctionnement d'un muscle. L'objectif de ce travail est de synthétiser et d'intégrer une nouvelle génération d'actionneurs-capteurs à base de réseaux interpénétrés de polymères conducteurs dans des systèmes de perceptions biomimétiques. Nous avons tout d'abord réalisé la synthèse et la caractérisation d'une nouvelle matrice hôte à base de réseaux interprétés de polymères (RIP) combinant de bonnes propriétés mécaniques du caoutchouc nitrile (NBR) et de conductivités ioniques du poly (oxyde d'éthylène). Nous avons ensuite incorporé dans cette matrice hôte un polymère conducteur électronique, le poly (3,4-éthylènedioxythiophène), par polymérisation in situ. Nous avons caractérisé les effets de différents paramètres de synthèse sur la localisation et la morphologie du polymère conducteur au sein de la matrice. Puis nous avons caractérisé les propriétés d'actionneurs et de capteurs de ces matériaux électroactifs. Enfin nous avons réalisé l'intégration de ces matériaux dans deux prototypes de systèmes de perceptions biomimétiques, le premier tactile imitant les vibrisses du rat et le deuxième visuel imitant les muscles oculomoteurs. Finalement, nous concluons que les propriétés et performances de cette nouvelle génération d'actionneurs-capteurs permettent leurs intégrations dans des systèmes de perceptions spécifiques pouvant être utilisés sur un robot mobile. / For many years researchers mimic the living in order to obtain systems that can adapt to complex environments. Today no conventional technology is able to fully compete with the functioning of a muscle. The objective of this work is to synthesize and integrate a new generation of actuators and sensors based on interpenetrating polymer networks of conductive polymers in biomimetic perceptions systems. We first carried out the synthesis and characterization of a novel host matrix based on interpreted polymer networks (IPN) combining good mechanical properties of nitrile rubber (NBR) and ionic conductivities of poly(ethylene oxide ) (PEO). Then, We incorporated into this host matrix an electronically conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), by in situ polymerization. We characterized the effects of various synthesis parameters on the location and morphology of the electrically conductive polymer within the matrix. Then, we characterized the actuation and sensing properties of these électroactive materials. Finally, we completed the integration of these materials into two prototypes of biomimetic perceptions. The first one tactile is imitating and emulating tactile perception of the rat vibrissae. The second one visual is imitating the extraocular muscles. Finally, we conclude that properties and performances of this new generation of sensor-actuators allow their integration into specific perception system that can be used on a mobile robot.
|
3 |
Elaboration d'actionneurs et capteurs polymères et intégration dans des systèmes de perceptions biomimétiquesFestin, Nicolas 19 December 2012 (has links) (PDF)
Depuis de nombreuses années des chercheurs imitent le vivant afin d'obtenir des systèmes capables de s'adapter à des environnements de plus en plus complexes. Aujourd'hui aucune des technologies classiques n'est capable de rivaliser complètement avec le fonctionnement d'un muscle. L'objectif de ce travail est de synthétiser et d'intégrer une nouvelle génération d'actionneurs-capteurs à base de réseaux interpénétrés de polymères conducteurs dans des systèmes de perceptions biomimétiques. Nous avons tout d'abord réalisé la synthèse et la caractérisation d'une nouvelle matrice hôte à base de réseaux interprétés de polymères (RIP) combinant de bonnes propriétés mécaniques du caoutchouc nitrile (NBR) et de conductivités ioniques du poly (oxyde d'éthylène). Nous avons ensuite incorporé dans cette matrice hôte un polymère conducteur électronique, le poly (3,4-éthylènedioxythiophène), par polymérisation in situ. Nous avons caractérisé les effets de différents paramètres de synthèse sur la localisation et la morphologie du polymère conducteur au sein de la matrice. Puis nous avons caractérisé les propriétés d'actionneurs et de capteurs de ces matériaux électroactifs. Enfin nous avons réalisé l'intégration de ces matériaux dans deux prototypes de systèmes de perceptions biomimétiques, le premier tactile imitant les vibrisses du rat et le deuxième visuel imitant les muscles oculomoteurs. Finalement, nous concluons que les propriétés et performances de cette nouvelle génération d'actionneurs-capteurs permettent leurs intégrations dans des systèmes de perceptions spécifiques pouvant être utilisés sur un robot mobile.
|
Page generated in 0.0444 seconds