1 |
Oxygen enrichment of air by using non-porous asymmetric cellulose acetate membranes : a study of gas permeation through non-porous membranes to enable prediction of permeabilities and selectivities for gas mixtures from pure gas penetration resultsIsmail, Mohammed Shakil January 1989 (has links)
No description available.
|
2 |
The separation of hydrogen and carbon using polymer membranesHinchcliffe, Anthony Bernard January 1991 (has links)
No description available.
|
3 |
One Dimensional, Transient Model of Heat, Mass, and Charge Transfer in a Proton Exchange MembraneEaton, Brandon Michael 21 May 2001 (has links)
A transient, one-dimensional, model of the membrane of a proton exchange membrane fuel cell is presented. The role of the membrane is to transport protons from the anode to cathode of the fuel cell while preventing the transport of other reactants. The membrane is modeled assuming mono-phase, multi-species flow. For water transport, the principle driving forces modeled are a convective force, an osmotic force (i.e. diffusion), and an electric force. The first of these results from a pressure gradient, the second from a concentration gradient, and the third from the migration of protons from anode to cathode and their effect (drag) on the dipole water molecules. Equations are developed for the conservation of protons and water, the conservation of thermal energy, and the variation of proton potential within the membrane.
The model is solved using a fully implicit finite difference approach. Results showing the effects of current density, pressure gradients, water and heat fluxes, and fuel cell start-up on water concentration, temperature, and proton potential across the membrane are presented. / Master of Science
|
4 |
Computational modeling of transport through polymer membranes and globular proteinsJiang, Yingying, doctor of chemical engineering 13 November 2012 (has links)
Within a polymer thin film, free-volume elements have a wide range of size and topology. This broad range of free-volume element sizes determines the ability for a polymer to perform molecular separations. Herein, the free volume and transport properties (diffusion, permeability, and selectivity) in both rubbery and glassy polymers were simulated using fully atomistic models. Extension of the computational tool to study the void structure in proteins is also included in this thesis. Six permeable thermally rearranged (TR) polymers and their precursors were studied. Using atomistic models, cavity size (free volume) distributions determined by a combination of molecular dynamics and Monte Carlo methods were consistent with experimental observation that TR polymers are more permeable than their precursors. The cavity size distributions determined by simulation were also consistent with free volume distributions determined by positron annihilation lifetime spectroscopy. The diffusion, solubility and permeation of gases in TR polymers and their precursors were also simulated at 308 K, with results that agree qualitatively with experimental data. A new hybrid Monte Carlo/Molecular Dynamics method is developed for estimating the slow diffusion processes of light gases transporting in glassy polymers. Diffusion coefficients, as small as 10⁻⁵ to 10⁻⁹ cm²/s are estimated for penetrants in four different polymers at 298 K. In all cases, agreement between literature experimental data and values obtained from the fast hybrid molecular dynamics method ranges from good to excellent. A new technique is developed using Monte Carlo methods to characterize the cavity size distribution and surface atoms in globular proteins. New statistical metrics have been defined for the structural characterization of globular proteins. Some of these metrics include volume, surface area, asymmetry ratio, interior cavity size distribution, and the identification of percolation channels. Wild-type (WT) myoglobin (Mb) and 5 Mb mutants have been studied in this research as examples. An analysis of cavity statistics provides an efficient method to quantify local properties such as packing density and transport pathways. The average cavity sizes of WT Mb and its mutants are around 4.0-5.0 Å. / text
|
5 |
Fabrication of polymer composites and their application towards removal of arsenic from waterVunain, Ephraim 07 June 2012 (has links)
M.Sc. / Millions of inhabitants worldwide are exposed to arsenic contaminated drinking water as a result of natural and man-made processes. Arsenic especially its inorganic forms, arsenic (III) and arsenic (V) have negative effects on human health especially in developing countries. Therefore fabricating low cost and efficient adsorbents for arsenic (III) removal is of great importance. The aim of this study is to use magnetite (Fe3O4) as filler, incorporated into a polymer blend forming composites as adsorbents for arsenic (III) removal. This work presents the fabrication, characterization and application of Fe3O4-EVA/PCL composites for arsenic (III) removal from water. Fe3O4/Ethylene-vinyl acetate copolymer (EVA)/polyaniline (PANI) and Fe3O4/Ethylene-vinyl acetate copolymer (EVA)/polycaprolactone (PCL) nanocomposites have been successfully synthesized by melt blending technique using a laboratory mixer (Thermo Scientific Haake Rheomex OS). The composites were characterized using scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques. Thermal analysis was done by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and mechanical properties using INSTRON 4443 mechanical Tester. Ability of [EVA (70%) PCL (15%) Fe3O4 (15%)] composites to adsorbed As(III) from water has been investigated through batch experiments. The maximum adsorption was 2.83 mg/g of As(III) ions at 26 ±1°C and pH 8.6. Adsorption data were fitted to Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The process fits well with the Langmuir isotherm. As(III) obeyed pseudo-second order kinetics. The nanocomposites investigated in this study showed good potential for As(III) removal from contaminated water may be due to the dispersion of the magnetite nanoparticles into the polymer blend composites which increases the surface area for the adsorption.
|
6 |
Wechselwirkungen von Immunzellen mit synthetischen und biomimetischen Oberflächen / Interactions of immune cells with synthetic and biomimetic surfacesHeilmann, Katja January 2006 (has links)
Die vorliegende Arbeit wurde im Zeitraum von Oktober 2002 bis November 2005
an dem Institut für Biochemie und Biologie der Universität Potsdam in Kooperation
mit dem Institut für Chemie des GKSS Forschungszentrums in Teltow
unter der Leitung von Herrn Prof. Dr. B. Micheel und Herrn Prof. Dr. Th.
Groth angefertigt.
Im Rahmen dieser Arbeit wurden die Wechselwirkungen von Immunzellen mit
verschiedenen Kultursubstraten untersucht. Dafür wurden drei verschiedene Hybridomzelllinien
eingesetzt. Eine Hybridomzelllinie (K2) ist im Laufe dieser Arbeit
hergestellt und etabliert worden.
<br><br>
Der Einsatz von synthetischen und proteinbeschichteten Kulturoberflächen führte
bei Hybridomzellen zu einer deutlich gesteigerten Antikörpersynthese im Vergleich
zu herkömmlichen Zellkulturmaterialien. Obwohl diese Zellen in der Regel
als Suspensionszellen kultiviert werden, führten die eingesetzten Polymermembranen
(PAN, NVP) zu einer verbesserten Antikörpersynthese (um 30%)
gegenüber Polystyrol als Referenz. Es konnte gezeigt werden, dass es einen Zusammenhang
zwischen der Produktivität und dem Adh asionsverhalten der Hybridomzellen
gibt.
<br><br>
Um den Einfluss von Proteinen der extrazellulären Matrix auf Zellwachstum
und Antikörpersynthese von Hybridomzellen zu untersuchen, wurden proteinbeschichtete
Polystyrol-Oberflächen eingesetzt. Für die Modifikationen wurden
Fibronektin, Kollagen I, Laminin und BSA ausgewählt. Die Modifikation der
Polystyrol-Oberfläche mit geringen Mengen Fibronektin (0,2-0,4 µg/ml) führte
zu einer beträchtlichen Steigerung der Antikörpersynthese um 70-120%. Für
Kollagen I- und BSA-Beschichtungen konnten Steigerungen von 40% beobachtet
werden. Modifikationen der Polystyrol-Oberfläche mit Laminin zeigten nur
marginale Effekte. Durch weitere Versuche wurde bestätigt, dass die Adhäsion
der Zellen an Kollagen I- und Laminin-beschichteten Oberflächen verringert
ist. Die alpha2-Kette des alpha2beta1-Integrins konnte auf der Zelloberfläche nicht nachgewiesen
werden. Durch ihr Fehlen wird wahrscheinlich die Bindungsfähigkeit
der Zellen an Kollagen I und Laminin beeinflusst. Durch die Ergebnisse konnte
gezeigt werden, dass Hybridomzellen nicht nur Suspensionszellen sind und
das Kultursubstrate das Zellwachstum und die Produktivität dieser Zellen stark
beeinflussen können. Der Einsatz von synthetischen und proteinbeschichteten
Kultursubstraten zur Steigerung der Antikörpersynthese kann damit für die industrielle
Anwendung von großer Relevanz sein.
Für die Modellierung einer Lymphknotenmatrix wurden Fibronektin, Kollagen I,
Heparansulfat und N-Acetylglucosamin-mannose in verschiedenen Kombinationen
an Glasoberflächen adsorbiert und für Versuche zur In-vitro-Immunisierung
eingesetzt. Es konnte gezeigt werden, dass die Modifikation der Oberflächen die
Aktivierung und Interaktion von dendritischen Zellen, T- und B-Lymphozyten
begünstigt, was durch den Nachweis spezifischer Interleukine (IL12, IL6) und
durch die Synthese spezifischer Antikörper bestätigt wurde. Eine spezifische
Immunreaktion gegen das Antigen Ovalbumin konnte mit den eingesetzten Zellpopulationen
aus Ovalbumin-T-Zell-Rezeptor-transgenen Mäusen nachgewiesen
werden. Die In-vitro-Immunantwort wurde dabei am stärksten durch eine Kombination
von Kollagen I, Heparansulfat und N-Acetylglucosamin-mannose auf
einer Glasoberfläche gefördert.
Die Etablierung einer künstlichen Immunreaktion kann eine gesteuerte Aktivierung
bzw. Inaktivierung von körpereigenen dendritischen Zellen gegen bestehende
Krankheitsmerkmale in vitro ermöglichen. Durch die Versuche wurden
Grundlagen für spezifische Immunantworten erarbeitet, die u.a. für die Herstellung
von humanen Antikörpern eingesetzt werden können. / In this scientific work the interactions of immune cells with different culture substrata were investigated. Therefore, three hybridoma cell lines were tested, one cell line (K2) was established during this work. The application of synthetic and protein-coated culture surfaces lead to a significantly increased synthesis of monoclonal antibodies in comparison to usual tissue polystyrene. Although hybridoma cells were normally cultured in suspension applied polymer membranes like PAN and NVP induced an increase by 30%. Furthermore, an influence of cell adhesion and antibody synthesis could be shown.
To investigate the influence of extracellular matrix proteins on growth and antibody synthesis of hybridoma cells tissue culture polystyrene was coated with fibronectin, collagen I, laminin and bovine serum albumine in different concentrations. Modifications with fibronectin (concentrations between 0.2 and 0.4 µg/ml) improved the yield of monoclonal antibodies considerably by 70-120%. Coating cell culture plates with collagen I and bovine serum albumine induced an increase by 40%. The coating with laminin showed only marginal effects. Further experiments approved a decreased adhesion of hybridoma cells on collagen I and laminin coated surfaces. FACS analysis showed a reduced presence of the alpha2-chain of the alpha2/beta1-integrin responsible for mediating the binding to collagen I and laminin. Probably, the binding affinity to collagen I and laminin coated surfaces was influenced by this. The results showed a high impact of modified culture substrata on antibody synthesis even if hybridoma cells were cultured in suspension normally and this could be an approach for industrial application. The second part of this work comprised the creation of a lymph node paracortex related surface. Different matrix proteins like fibronectin, collagen I, heparane sulfate and a sugar named N-acetylglucosamine-mannose were coated in different combinations on glass surfaces to create a matrix. Dendritic cells were cultivated on these surfaces and get activated with ovalbumin. After that naïve T- and B-cell populations were added and it could be shown nicely that the modifications of the culture surface were essential for activation and interaction of dendritic cells, T- and B-cells which resulted in the secretion of specific interleukins (IL12, IL6) and specific antibodies (anti-ovalbumin-antibodies). In these experiments a specific immune respone to ovalbumin in vitro could be detected if the cells were isolated from ovalbumin-receptor-transgenic-mice (TgNDO11.10). This In-vitro-immunization was triggered at most if cells were cultured on a surface coated with a combination of collagen I, heparane sulfate and N-acetylglucosamine-mannose. These experiments could be basics for controlled specific immune reactions in vitro which could be used for the production of human antibodies or for the controlled activation or inactivation of immune cells.
|
7 |
Application of membrane gas separation processes to CO2 and H2 recovery from steelmaking gases for carbon capture and use / Étude du traitement et de la valorisation des gaz de haut fourneau de l’industrie sidérurgique par des procédés de perméation membranaire appliqués à la récupération sélective de CO2 et H2Ramirez Santos, Álvaro Andrés 12 December 2017 (has links)
L’acier est produit aujourd’hui principalement en faisant appel à une technologie basée sur le procédé haut fourneau-convertisseur à l’oxygène, conduisant à trois types d’émissions principales: le gaz de haut fourneau (BFG), le gaz de cokerie (COG), et le gaz de convertisseur (BOFG). Dans le cadre du projet VALORCO, une analyse des possibilités de réduction des émissions carbonées, associée à une valorisation des émissions de la sidérurgie, a été réalisée. Une des voies étudiées est la production de composés d’intérêt industriel tel que méthanol, pouvant être produit par transformation chimique du CO et/ou CO2 contenus dans les émissions, associé à de l’hydrogène. L’objectif principal de ce travail de thèse consiste à évaluer les possibilités offertes par le procédé de perméation gazeuse, appliqué à la récupération sélective de ces composés dans les 3 types d’émissions. Dans un premier temps, un état de l’art des différents projets dédiés à la capture (CCS) et à la valorisation (CCU) des émissions dans l’industrie de l’acier est présenté, avec une attention particulière aux différentes technologies de séparation des gaz. Des mesures expérimentales de sélectivité et de perméance pour différentes conditions de température et de pression, réalisées sur banc dédié avec deux matériaux membranaires disponibles commercialement et sélectif à l’hydrogène (vitreux) et au CO2 (élastomère) ont permis une étude paramétrique systématique par simulation des performances de séparation du procédé appliqué au BFG, COG et BOFG. Une comparaison des procédés basés sur un seul ou plusieurs étages de perméation, y compris avec des boucles de recirculation, a ensuite été entreprise dans un environnement de type Process System Engineering (PSE, logiciel Aspen Plus). L’influence des paramètres opératoires (rapport de pression, température, taux de prélèvement) sur les performances de séparation a été réalisée, conduisant à une cartographie des compositions atteignables. La consommation énergétique et la surface membranaire nécessaires pour chaque configuration permettent au final une optimisation techno-économique du procédé, sur la base d’un modèle économique intégré aux conditions de simulation / Steel is produced today mainly in a blast furnace-oxygen converter process, leading to three main types of emissions: blast furnace gas (BFG), coke oven gas (COG), and converter gas (BOFG). In the framework of the VALORCO project, an analysis of the possibilities for reducing carbon emissions, combined with the valorization of emissions from the steel industry, was carried out. One of the routes studied is the production of compounds of industrial interest such as methanol, which can be produced by chemical transformation of the CO and / or CO2 contained in the emissions associated with hydrogen. The main objective of this thesis work is to evaluate the possibilities offered by the gas permeation process applied to the selective recovery of these compounds in the three types of emissions. Initially, a state of the art of the various projects dedicated to the capture (CCS) and the valorization (CCU) of the emissions in the steel industry is presented, with particular attention to the different gas separation technologies. Experimental measurements of selectivity and permeance for different temperature and pressure conditions, carried out on a dedicated bench with two commercially available membrane materials, one selective to hydrogen (glassy) and one to CO2 (rubbery), allowed a systematic parametric study by simulation of the separation performance of the process applied to the BFG, COG and BOFG. A comparison of the processes based on one or more permeation stages, including recirculation loops, was then undertaken in a Process System Engineering (PSE) environment (Aspen Plus software). The influence of the operating parameters (pressure ratio, temperature, stage cut) on the separation performance was evaluated, leading to a mapping of attainable compositions. The energy consumption and the membrane surface required for each configuration allow a techno-economic optimization of the process, on the basis of an economic model integrated to the simulation conditions
|
8 |
A Preliminary Study on Water Collection Ability of Nanofibers Derived from Electrospun PolymersLIU, XIAOXIAO January 2019 (has links)
No description available.
|
9 |
Development and evaluation of aromatic polyamide-imide membranes for H₂S and CO₂ separations from natural gasVaughn, Justin 15 March 2013 (has links)
Over the past decade, membrane based gas separations have gained traction in industry as an attractive alternative to traditional thermally based separations due to their potential to offer lower operational and capital expenditures, greater ease of operation and lower environmental impact. As membrane research evolves, new state-of-the-art membrane materials as well as processes utilizing membranes will likely be developed. Therefore, their incorporation into existing thermally based units as a debottlenecking step or as a stand-alone separation unit is expected to become increasingly more common. Specifically for natural gas, utilization of smaller, more remote natural gas wells will require the use of less equipment intensive and more flexible separation technologies, which precludes the use of traditional, more capital and equipment intensive thermally based units.
The use of membranes is, however, not without challenges. Perhaps the most important hurdle to overcome in membrane development for natural gas purification is the ability to maintain high efficiency in the presence of harsh feed components such as CO₂ and H₂S, both of which can swell and plasticize polymer membranes. Additionally, as this project demonstrates, achievement of similarly high selectivity for both CO₂ and H₂S is challenged by the different governing factors that control their transport through polymeric membranes. However, as others have suggested and shown, as well as what is demonstrated in this project, when CO₂ is the primary contaminant of interest, maintaining high CO₂/CH₄ efficiency appears to be more important in relation to product loss in the downstream. This work focuses on a class of fluorinated, glassy polyamide-imides which show high plasticization resistance without the need for covalent crosslinking. Membranes formed from various polyamide-imide materials show high mixed gas selectivities with adequate productivities when subjected to feed conditions that more closely resemble those that may be encountered in a real natural gas well. The results of this project highlight the polyamide-imide family as a promising platform for future membrane material development for materials aimed at aggressive natural gas purifications due to their ability to maintain high selectivities under aggressive feed conditions without the need for extensive stabilization methods.
|
10 |
Pyridine and amine functionalized polymers by anionic and controlled free radical polymerization methodsNdawuni, Mzikayise Patrick 07 1900 (has links)
The synthesis of dipyridyl functionalized polysulfones with improved hydrophilicity, enhanced membrane morphology and excellent ATRP polymeric ligand properties was conducted by the following method:
(a) the formation of lithiated polysulfone from unmodified polysulfone and the subsequent reaction with 2,2'-vinylidenedipyridine in tetrahydrofuran at -78 oC under argon atmosphere to afford the corresponding dipyridyl functionalized polysulfone. The stoichiometry of the reaction affects the degree of functionalization of the product. When equimolar amounts of 2,2'-vinylidenedipyridine are added to the lithiated polysulfone, the degree of functionalization obtained was 45%. However, the addition of 10% and 20% molar excess of 2,2'-vinylidenedipyridine to the corresponding lithiated polysulfone produced dipyridyl functionalized polysulfones with degrees of functionalization of 80% and 95%, respectively; and
(b) the membranes obtained from unmodified polysulfone as well as dipyridyl functionalized polysulfones were characterized by atomic force microscopy, scanning electron microscopy, pure water permeation measurements and contact angle measurements.
Amine chain end functionalized polystyrene and poly(methyl methacrylate) were prepared by Atom Transfer Radical Polymerization (ATRP) methods as follows:
(a) •-Aminophenyl functionalized polystyrene was prepared in quantitative yields by ATRP methods using a new primary amine functionalized initiator adduct, formed in situ by the reaction of 1-(4-aminophenyl)-1-phenylethylene and (1-bromoethyl)benzene in the presence of copper (I) bromide/2,2'-bipyridyl as catalyst in diethyl ether at 110 oC, for the polymerization of styrene.(b) New •-bis(aminophenyl) and •,ω-tetrakis(aminophenyl) functionalized polymers were prepared in quantitative yields by the ATRP method using the following synthetic strategy:
(i) the initiation of styrene polymerization with a new primary diamine functionalized initiator adduct, generated in situ by the reaction of stoichiometric amounts of 1,1-bis(4-aminophenyl)ethylene with (1-bromoethyl)benzene in the presence of copper (I) bromide/2,2'-bipyridyl as catalyst, afforded •-bis(aminophenyl) functionalized polystyrene; and
(ii) •-bis(aminophenyl) functionalized poly(methyl methacrylate) was prepared by the ATRP method using the primary diamine functionalized initiator adduct as initiator for methyl methacrylate polymerization; and
(iii) well defined •,ω-tetrakis(aminophenyl) functionalized polystyrene was prepared by the post ATRP chain end modification reaction of •-bis(aminophenyl) functionalized polystyrene with 1,1-bis(4-aminophenyl)-ethylene at the completion of the polymerization reaction.
(c) Similarly, •-bis(4-dimethylaminophenyl) functionalized polystyrene was prepared by using a new tertiary diamine functionalized initiator adduct, formed in situ by treatment of equimolar amounts of 1,1-bis[(4-dimethylamino)phenyl]-ethylene with (1-bromoethyl)benzene in the presence of copper (I) bromide/2,2'-bipyridyl as the catalyst in diphenyl ether at 110 oC for the initiation of styrene polymerization by the ATRP method. Furthermore, the ATRP of methyl methacrylate, initiated by the new tertiary diamine functionalized initiator adduct, produced •-bis(4-dimethylaminophenyl) functionalized poly(methyl methacrylate). In addition, •,ω-tetrakis(4-dimethylaminophenyl) functionalized polystyrene was synthesized via a post ATRP chain end modification reaction of •-bis(4-dimethylaminophenyl) functionalized polystyrene with equimolar amounts of 1,1-bis[(4-dimethylamino)phenyl]ethylene at the completion of the polymerization process.
vi
Quantitative yields of the different amine functionalized polymers with predictable number average molecular weights (Mn = 1.3 x 103 – 16.4 x103 g/mol), narrow molecular weight distributions (Mw/Mn = 1.03 – 1.29) and controlled chain end functionality were obtained.
Polymerization kinetics data was employed to determine the controlled/living character of each ATRP reaction leading to the formation of the different amine chain end functionalized polymers. The polymerization processes were monitored by gas chromatographic analyses. Polymerization kinetics measurements for all reactions show that the polymerizations follow first order rate kinetics with respect to monomer consumption. The number average molecular weight of the amine functionalized polymers increases linearly with percentage monomer conversion and polymers with narrow molecular weight distribution were obtained.
The ATRP of styrene, catalyzed by a novel dipyridyl functionalized polysulfone/CuBr supported catalyst system, afforded well defined polystyrene with predictable number average molecular weight and narrow molecular weight distribution in a controlled/living free radical polymerization process.
The substituted 1,1-diphenylethylene initiator precursor derivatives and the functionalized polymers were characterized by nuclear magnetic resonance spectrometry, fourier transform infrared spectroscopy, thin layer chromatography, column chromatography, size exclusion chromatography, non-aqueous titrations, differential scanning calorimetry and thermogravimetrical analysis. / Chemistry / M. Sc. (Chemistry)
|
Page generated in 0.2334 seconds