• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mekaniska och termiska egenskaper för tre polymer blandningar / Mechanical and thermal properties of three polymer blends

Azam, Jasmin, Motmain, Rafe January 2020 (has links)
Polymerer produceras i stora mängder både för människors vardagliga liv och för applikationer i industrin. En anledningen till deras popularitet är på grund av variationer i materialegenskaper. Genom att kombinera olika polyemerer i sammansättningar produceras polymerblandningar med speciella egenskaper. Syftet med arbetet är datainsamling för tre polymerblandningars mekaniska och termiska egenskaper. Polymerblandningarna består avtermoplastiks polyuretan(TPU) blandat med, polypropen(PP), polykarbonat(PC) ochpolylaktid (PLA). För kunskap om tidigare forskning inleds denna kandidatuppsats med litteraturstudie. Alltså har kvalitativa metoder tillämpats. Strävan har varit att använda litteratur som publicerats nära i tiden på grund av att det sker mycket forskning kring polyemerer. I de fall där äldre litteratur använts har informationen jämförts med nyare forskning för att konstatera att det även stämmer i nutid. Till största del grundar sig projektet på laborationer, därför har även kvantitativa forskningsmetoder bedrivits. Tidsbrist resulterade i att projektet avgränsades under arbetets gång. Från början var det planerat att genomföra prover med 10,30,50 och 90 % TPU med resterande procentandel PLA, PC och PP. Blandningsprover med 90 % PC hann inte genomföras, därför föreslås detta viktförhållande till framtida forskning. Dragprovstester hann inte genomföras och kan därför vara något att överväga. Att tillverka kompositer med blandningarna som matriser är ytterligare något värt att vidare undersöka. / Polymers are produced in large quantities both for people´s everyday lives and for applications in industry. One reason for their popularity is due to variations in material properties. By combining different polymers in compositions, polymer blends with special properties are produced. The purpose of this work is data collection for the mechanical and thermal properties of three polymer blends. The polymer blends consist of thermoplastic polyurethane(TPU) mixed with, polypropylene(PP), polycarbonate(PC) and polylactide (PLA). For knowledge of previous research, this bachelor´s thesis begins with a literature study. Thus, qualitative methods have been applied. The aim has been to use literature that has been published close in time due to the fact that there is a lot of research on polymers. In cases where older literature has been used, the information has been compared with recent research to establish that it is also true today. The project is largely based on laboratory work, which is why quantitative research methods have also been conducted. Lack of time resulted in the project being further delimited during the work. From the beginning it was planned to carry out samples with 10,30,50 and 90 % TPU with there maining percentage of PLA, PC or PP. There was no time to performed mixed samples with 90 % PC , therefore this weight ratio is proposed for future research. Tensile tests did not have time to be carried out and may therefore be something to consider. Making composites with the mixtures as matrices is another thing worth exploring further.
2

Microscopy techniques for studying polymer-polymer blends

Mattsson, Sandra January 2019 (has links)
Semiconductors are used in many electronic applications, for example diodes, solar cells and transistors. Typically, semiconductors are inorganic materials, such as silicon and gallium arsenide, but lately more research and development has been devoted to organic semiconductors, for example semiconducting polymers. One of the reasons is that polymers can be customized, to a greater extent than inorganic semiconductors, to create a material with desired properties. Often, two polymers are blended to obtain the desired function, but two polymers do not usually result in an even blend. Instead they tend to separate from each other to varying degrees. The morphology of the blend affects the material properties, for example how efficiently it can convert electricity to light. In this project, thin films consisting of polymer blends were examined using microscopy techniques for the purpose of increasing our understanding of the morphology of such blends. One goal was to investigate whether a technique called correlative light and electron microscopy can be useful for examining the morphology of these films. In correlative light and electron microscopy, a light microscope and an electron microscope are used in the same location in order to be able to correlate the information from the two microscopes. The second goal was to learn about the morphology of the thin films using various microscopy techniques. The polymers used were Super Yellow and poly(ethylene oxide) with large molecular weight. Super Yellow is a semiconducting and light-emitting polymer while poly(ethylene oxide) is an isolating and non-emitting polymer that can crystallize. In the blend films, large, seemingly crystalline structures appeared. The structures could be up to 1 mm in the lateral direction, while the films were only approximately 170 nm thick. These structures could grow after the films had dried and their shapes were similar to those of poly(ethylene oxide) crystals. Consequently, there is reason to believe that it is the poly(ethylene oxide) that makes up the seemingly crystalline structures, but the structures also emitted more light than the rest of the film, and Raman spectroscopy showed that there was Super Yellow in the same location as the crystals. Among the microscopy techniques used, phase contrast microscopy was particularly interesting. This method visualizes differences in optical path length and was useful for studying polymer blends when the polymers have different indices of refraction. Correlating light and electron microscopy showed that there was a pronounced topographical difference between the seemingly crystalline regions and the rest of the thin film. Light microscopy has a limited resolution due to diffraction, but as long as the resolution of the light microscope is sufficient for seeing phase separation, correlative light and electron microscopy turned out to be a good method for studying the morphology of thin films of polymer blends. / Halvledare är viktiga för många elektroniska ändamål eftersom de kan användas till exempelvis dioder, solceller och transistorer. Traditionellt används inorganiska halvledande material som kisel eller galliumarsenid, men på senare tid har allt mer forskning och utveckling inriktat sig mot organiska (kolbaserade) halvledare, såsom halvledande polymerer, bland annat eftersom det i högre utsträckning går att skräddarsy de organiska materialen så att de får önskvärda egenskaper. Ofta blandas två polymerer med varandra för att skapa ett material med nya egenskaper som är önskvärda, men två polymerer brukar inte blandas jämnt utan tenderar att separera från varandra i olika utsträckning. Hur blandningen ser ut (morfologin) påverkar materialets egenskaper, till exempel hur effektivt det omvandlar ström till ljus. Med syfte att öka förståelsen för hur morfologin ser ut hos en blandning av två polymerer, har detta projekt gått ut på att undersöka tunna filmer av polymer-blandningar med hjälp av mikroskopiska tekniker. Ett delmål var att ta reda på om en teknik som heter korrelativ ljus- och elektronmikroskopi är en bra metod för att undersöka morfologin hos dessa filmer. Vid korrelativ ljus- och elektronmikroskopi används både ett ljusmikroskop och ett elektronmikroskop på samma plats för att kunna korrelera informationen som de båda mikroskopen ger. Det andra delmålet var att undersöka vad de olika mikroskopi-teknikerna kan säga om morfologin hos de tunna filmerna. De polymerer som använts är Super Yellow och poly(etylenoxid) med hög molekylmassa. Super Yellow är en oordnad halvledande och ljusemitterande polymer medan poly(etylenoxid) är en isolerande och icke-emitterande polymer som kan kristallisera. I de blandade filmerna uppstod stora kristall-liknande strukturer som kunde vara upp emot 1 mm breda trots att filmerna bara var ungefär 170 nm tunna. Dessa strukturer kunde växa fram efter det att filmerna redan hade torkat och påminde i form om kristaller som kan bildas av poly(etylenoxid). Det finns alltså skäl att tro att det är poly(etylenoxid) som kristalliserats, men de kristall-liknande strukturerna visade sig emittera mer ljus än vad resten av filmen gjorde, och Raman-spektroskopi visade att det även fanns Super Yellow på samma plats som kristallerna. Bland de mikroskopitekniker som testades utmärker sig faskontrastmikroskopi, som visar skillnader i den optiska vägskillnaden (det vill säga faktisk vägskillnad multiplicerat med brytningsindex). Det visade sig vara en intressant teknik för att studera polymerblandningar när de båda polymererna har olika brytningsindex. Genom att korrelera ljus- och elektronmikroskopi visade det sig att det fanns en tydlig skillnad i struktur mellan de kristall-liknande områdena och resten av den tunna filmen. Ljusmikroskopi har begränsad upplösning på grund av ett fenomen som heter diffraktion, men så länge som ljusmikroskopets upplösning är tillräcklig för att se fasseparation visade det sig att korrelativ ljus- och elektronmikroskopi är en bra metod för att studera morfologin hos tunna filmer av polymerblandningar.

Page generated in 0.096 seconds