31 |
Fabrication of polymeric microfluidic devices via photocurable liquid monomersHaraldsson, Klas Tommy January 2005 (has links)
Microfluidic devices have long been considered an ideal tool for rapid and inexpensive chemical analysis and reactions in areas ranging from point-of-care health to national security applications. However, fabricating microfluidic devices is time consuming, difficult and above all expensive. In commercial applications many thousand units need to be sold before the development costs are recovered. The problem is compounded since most microfluidic devices do not have generalized architectures which means that each end use requires a specialized design. The microfluidics marketplace can therefore be seen as being composed of 1000’s of niche markets. To address development costs, there is clearly a need for a versatile technology that can be used for many different applications and that enables rapid testing and optimization of new designs. This work describes such a technology: Contact Liquid Photolithographic Polymerization (CLiPP). The thesis consists of two parts: polymerization kinetics and the fabrication of polymeric microfluidic devices via CLiPP. The photopolymerization kinetics is evaluated for a number of monomer types, and the results are used to assess their suitability in the CLiPP process. Vinyl ether/maleate photoinitiated copolymerization is examined in detail. It is shown that the polymerization kinetics is dramatically influenced by the availability of easily abstractable hydrogens The presence of α-hydrogens adjacent to the vinyl ether functional group reduces the polymerization rate and the dependence of the polymerization rate as a function of initiation rate. Also, photoinitiated acrylate and methacrylate polymerization kinetics are presented. The kinetics results in these three monomer types are used to explain the different patterning properties of the monomer functionalities used in the CLiPP process, in which acrylates show enhanced patterning properties compared to methacrylates. The polymerization kinetics is studied with traditional tools and methods: photo Differential Scanning Calorimetry (photo-DSC), photo Fourier Transform Real Time Infrared Spectroscopy (photo-RTIR), and photo Real Time Electron Paramagnetic Spectroscopy (ESR). The microfluidic fabrication is performed via both in-house fabricated and commercially available CLiPP-specific hardware. The patterning qualities of the structures are evaluated via Scanning Electron Microscopy (SEM) and Optical Microscopy. The finished devices are used in their intended environment and evaluated in suitable manners to assess their utility. In this thesis, the development and design of specialized CLiPP fabrication machines, fabrication techniques and resulting microfluidic device features are presented anddiscussed. It is shown that the CLiPP scheme enables features such as 3 dimensional (3D) capabilities for minimized device footprints, a very large number of polymeric materials for optimized device components as well as facile integration of prefabricated components. Also, covalent layer adhesion and permanent surface modifications via living radical processes are demonstrated. These capabilities are exemplified in a number of examples that range from a 3D fluidic channel maze with separated fluidic streams and a device with independently moveable parts to a device constructed from multiple polymeric materials and devices with permanently modified surfaces, Also, batch processing capabilities are shown through fabrication of 400 identical undercut microstructures. Rapid and inexpensive design evaluations, multiple materials capabilities and the ability to seamlessly incorporate prefabricated microstructures of the CLiPP process strongly encourages continued method development. The future work that remains to be addressed is divided into two parts. First, to enable novel research devices, new polymer materials with enhanced mechanical and surface properties must be developed. Also, integration of prefabricated microstructures such as sensors and actuators has to be incorporated in a reproducible and rational manner. Secondly, to enable device mass fabrication, new automated equipment is to be developed in order to utilize the full batch processing potential of CLiPP. / QC 20101019
|
32 |
Fatty acid methyl esters as reactive diluents in solvent-borne thermally cured coil-coatingsJohansson, Katarina January 2006 (has links)
<p>This work describes how a fatty acid methyl ester (FAME) derived from a vegetable oil can be introduced as reactive diluent in a solvent-borne thermally cured coil-coating system. The evaluated reactive diluent, rape seed methyl ester (RME), has been evaluated both in a fully formulated clear coat system and via model studies.</p><p>A reactive diluent is a compound that acts as a solvent in the liquid paint, lowering the viscosity, and chemically reacts into the final film during cure. Introduction of a reactive diluent derived from vegetable oil give a more environmental compliant coating since a renewable material is incorporated in the coating and the amount of traditional solvent can be decreased. These positive environmental factors have increased the industrial interest.</p><p>The fully formulated clear coat studies describes how addition of reactive diluent affects rheological properties of the wet paint, film formation, incorporation, and final film properties in a hydroxyl-functional polyester/melamine coil-coating system. The coating were cured under industrial coil-coating cure conditions and analyzed with Raman, carbon-14 dating, extraction, dynamic mechanical analysis, and visually observed. Viscosity measurement of the wet paint show that RME works as a diluent. RME increase the mobility in the system enhancing the film formation process and occurrence of defect-free films. The incorporation of RME could not be confirmed by Raman analysis. However, carbon-14 dating did indicate the presence of RME that could not be extracted from the films. The appearance and mechanical properties of the films were also significantly affected by addition of RME. Dynamic mechanical analysis of the free standing films showed that the final film properties were affected by oven temperature, choice of co-solvent, and flash-off period.</p><p>Model studies were performed to further clarify how RME chemically can react through transesterification with the hydroxyl-groups of the polyester. RME and its two main components methyl oleate and methyl linoleate were reacted with primary alcohols with and without tertiary hydrogen both under low temperature (110, 130, 150, 170°C) and industrial cure conditions. The transesterification reaction was monitored with 1H-NMR and real time IR. Evaporation and side reactions, e.g. oxidation, are competing factors with the transesterification reaction. The fatty acid structure affects the conversion as a higher amount of unsaturations triggers higher degree of oxidation. The study also showed that reaction time and temperature affects the transesterification conversion, degree of side reactions, and catalyst choice.</p>
|
33 |
Fabrication of polymeric microfluidic devices via photocurable liquid monomersHaraldsson, Klas Tommy January 2005 (has links)
<p>Microfluidic devices have long been considered an ideal tool for rapid and inexpensive chemical analysis and reactions in areas ranging from point-of-care health to national security applications. However, fabricating microfluidic devices is time consuming, difficult and above all expensive. In commercial applications many thousand units need to be sold before the development costs are recovered. The problem is compounded since most microfluidic devices do not have generalized architectures which means that each end use requires a specialized design. The microfluidics marketplace can therefore be seen as being composed of 1000’s of niche markets.</p><p>To address development costs, there is clearly a need for a versatile technology that can be used for many different applications and that enables rapid testing and optimization of new designs. This work describes such a technology: Contact Liquid Photolithographic Polymerization (CLiPP).</p><p>The thesis consists of two parts: polymerization kinetics and the fabrication of polymeric microfluidic devices via CLiPP.</p><p>The photopolymerization kinetics is evaluated for a number of monomer types, and the results are used to assess their suitability in the CLiPP process. Vinyl ether/maleate photoinitiated copolymerization is examined in detail. It is shown that the polymerization kinetics is dramatically influenced by the availability of easily abstractable hydrogens The presence of α-hydrogens adjacent to the vinyl ether functional group reduces the polymerization rate and the dependence of the polymerization rate as a function of initiation rate. Also, photoinitiated acrylate and methacrylate polymerization kinetics are presented. The kinetics results in these three monomer types are used to explain the different patterning properties of the monomer functionalities used in the CLiPP process, in which acrylates show enhanced patterning properties compared to methacrylates. The polymerization kinetics is studied with traditional tools and methods: photo Differential Scanning Calorimetry (photo-DSC), photo Fourier Transform Real Time Infrared Spectroscopy (photo-RTIR), and photo Real Time Electron Paramagnetic Spectroscopy (ESR).</p><p>The microfluidic fabrication is performed via both in-house fabricated and commercially available CLiPP-specific hardware. The patterning qualities of the structures are evaluated via Scanning Electron Microscopy (SEM) and Optical Microscopy. The finished devices are used in their intended environment and evaluated in suitable manners to assess their utility.</p><p>In this thesis, the development and design of specialized CLiPP fabrication machines, fabrication techniques and resulting microfluidic device features are presented anddiscussed. It is shown that the CLiPP scheme enables features such as 3 dimensional (3D) capabilities for minimized device footprints, a very large number of polymeric materials for optimized device components as well as facile integration of prefabricated components. Also, covalent layer adhesion and permanent surface modifications via living radical processes are demonstrated. These capabilities are exemplified in a number of examples that range from a 3D fluidic channel maze with separated fluidic streams and a device with independently moveable parts to a device constructed from multiple polymeric materials and devices with permanently modified surfaces, Also, batch processing capabilities are shown through fabrication of 400 identical undercut microstructures.</p><p>Rapid and inexpensive design evaluations, multiple materials capabilities and the ability to seamlessly incorporate prefabricated microstructures of the CLiPP process strongly encourages continued method development. The future work that remains to be addressed is divided into two parts. First, to enable novel research devices, new polymer materials with enhanced mechanical and surface properties must be developed. Also, integration of prefabricated microstructures such as sensors and actuators has to be incorporated in a reproducible and rational manner. Secondly, to enable device mass fabrication, new automated equipment is to be developed in order to utilize the full batch processing potential of CLiPP.</p>
|
34 |
Understanding the mechanisms behind atom transfer radical polymerization : exploring the limit of controlBergenudd, Helena January 2011 (has links)
Atom transfer radical polymerization (ATRP) is one of the most commonly employed techniques for controlled radical polymerization. ATRP has great potential for the development of new materials due to the ability to control molecular weight and polymer architecture. To fully utilize the potential of ATRP as polymerization technique, the mechanism and the dynamics of the ATRP equilibrium must be well understood. In this thesis, various aspects of the ATRP process are explored through both laboratory experiments and computer modeling. Solvent effects, the limit of control and the use of iron as the mediator have been investigated. It was shown for copper mediated ATRP that the redox properties of the mediator and the polymerization properties were significantly affected by the solvent. As expected, the apparent rate constant (kpapp) increased with increasing activity of the mediator, but an upper limit was reached, where after kpapp was practically independent of the mediator potential. The degree of control deteriorated as the limit was approached. In the simulations, which were based on the thermodynamic properties of the ATRP equilibrium, the same trend of increasing kpapp with increasing mediator activity was seen and a maximum was also reached. The simulation results could be used to describe the limit of control. The maximum equilibrium constant for controlled ATRP was correlated to the propagation rate constant, which enables the design of controlled ATRP systems. Using iron compounds instead of copper compounds as mediators in ATRP is attractive from environmental aspects. Two systems with iron were investigated. Firstly, iron/EDTA was investigated as mediator as its redox properties are within a suitable range for controlled ATRP. The polymerization of styrene was heterogeneous, where the rate limiting step is the adsorption of the dormant species to the mediator surface. The polymerizations were not controlled and it is possible that they had some cationic character. In the second iron system, the intention was to investigate how different ligands affect the properties of an ATRP system with iron. Due to competitive coordination of the solvent, DMF, the redox and polymerization properties were not significantly affected by the ligands. The differences between normal and reverse ATRP of MMA, such as the degree of control, were the result of different FeIII speciation in the two systems. / QC 20110406
|
35 |
Bio-inspired cellulose nanocomposites and foams based on starch matrixSvagan, Anna January 2008 (has links)
In 2007 the production of expanded polystyrene (EPS) in the world was over 4 million tonnes and is expected to grow at 6 percent per year. With the increased concern about environmental protection, alternative biodegradable materials from renewable resources are of interest. The present doctoral thesis work successfully demonstrates that starch-based foams with mechanical properties similar to EPS can be obtained by reinforcing the cell-walls in the foams with cellulose nanofibers (MFC). High cellulose nanofiber content nanocomposites with a highly plasticized (50/50) glycerol-amylopectin starch matrix are successfully prepared by solvent-casting due to the high compatibility between starch and MFC. At 70 wt% MFC, the nanocomposites show a remarkable combination of high tensile strength, modulus and strain to failure, and consequently very high work to fracture. The interesting combination of properties are due to good dispersion of nanofibers, the MFC network, nanofiber and matrix properties and favorable nanofiber-matrix interaction. The moisture sorption kinetics (30% RH) in glycerol plasticized and pure amylopectin film reinforced with cellulose nanofibers must be modeled using a moisture concentration-dependent diffusivity in most cases. The presence of cellulose nanofibers has a strong reducing effect on the moisture diffusivity. The decrease in zero-concentration diffusivity with increasing nanofiber content could be due to geometrical impedance, strong starch-MFC molecular interaction and constrained swelling due to the cellulose nanofiber network present. Novel biomimetic starch-based nanocomposite foams with MFC contents up to 40 wt% are successfully prepared by freeze-drying. The hierarchically structured nanocomposite foams show significant increase in mechanical properties in compression compared to neat starch foam. Still, better control of the cell structure could further improve the mechanical properties. The effect of cell wall composition, freeze-drying temperature and freezing temperature on the resulting cell structure are therefore investigated. The freeze-drying temperature is critical in order to avoid cell structure collapse. By changing the starch content, the cell size, anisotropy ratio and ratio between open and closed cells can be altered. A decrease in freezing temperature decreases the cell size and increases the anisotropy ratio. Finally, mechanical properties obtained in compression for a 30 wt% MFC foam prepared by freeze-drying demonstrates comparable properties (Young's modulus and yield strength) to expanded polystyrene at 50% RH and similar relative density. This is due to the reinforcing cellulose nanofiber network within the cell walls. / QC 20100913
|
36 |
Effect of Wood Constituents Oxidation of Unsaturated Fatty AcidsSalehi Movahed, Alireza January 2011 (has links)
This work presents the mechanisms of free radicals in a model system between fatty acids oxidation process and wood components. The aim is to create a better understanding of new environmentally friendly materials for exterior wood protection. The drying mechanisms of the unsaturated fatty acids with wood model system in the real time were monitored by using RT-IR. This method together with SEC and NMR are enormously powerful spectroscopy techniques to determine the physical and chemical properties of fatty acids-wood during the oxidation process over time. In the first part of this study the focus was in a molecular level on oxidation of methyl linoleate mixed with lignin model compounds (1 and 20 wt%). The effect of lignin structures on unsaturation fatty acids oxidation was determined with 1 wt% lignin model compounds. The interaction, coupling reaction and new structure formations were analyzed through 20 wt% of same lignin compounds mixed with 80 wt% methyl linoleate. The oil oxidation interaction mechanisms were also evaluated by using methyl linoleate, methyl oleate and Linola® on real/natural wood (Norwegian Spruce). In the second part of this work, FT-IR and different NMR methods were used as characterization techniques. The results showed that the oxidative drying process of unsaturated fatty acids was indeed affected by wood constituents. The most hydrophobic part of the wood; lignin, interacted with the oxidation process and some lignin structures inhibited or retarded the reaction. Not only the oil structures were affected but also the lignins were to some extent oxidized as a competing reaction with the oil oxidation. However, a formation of chemicals bonds between the oil and the lignin structures was not observed, i.e. the oils were not immobilized on lignin by covalent bond formation to any significant extent. Further, the focus was on oils in wood using NMR and FTIR demonstrated that highly reactive linoleic acid did react in wood significantly, while it was not immobilized to the same extent. Oleic acid on the other hand reacted more sluggish but the reactive part was immobilized in the wood structure. According to the results, it can be concluded that the structure of the oil is crucial in the overall protective performance of the system. This study indicated that the oxidation pattern of fatty acids behaved differently on wood surface. The wood model compounds minimize the complexity of all elements that exist normally in the natural wood. It can also be concluded that different wood components e.g. end group structures, affect the oil drying process in different ways. The fatty acids pattern will affect not only the structure of the oil dried itself but also the surrounding wood materials. / Detta arbete beskriver friradikalmekanismerna i ett modellsystem mellan fettsyra oxidation och träs beståndsdelar för att skapa bättre förståelse för nya miljövänliga skyddssystem gällande trämaterial som används utomhus. Torkningsmekanismen av omättade fettsyror med trä modellsystem analyserades med hjälp av RT-IR i realtid. Denna metod tillsammans med SEC och NMR spektroskopier understödjer undersökningen av de fysikaliska och kemiska förändringarna av olja och träkomponenter under oxidationsprocessen. I den första delen av denna studie blandades metyl linoleate med ligninmodellföreningar (1 och 20 vikt%). Effekten av olika ligninstrukturer på omättade fettsyrors oxidation, bestämdes med 1vikt% ligninmodellföreningar. Samverkan och kemiska kopplingsreaktioner analyserades med 20 vikt% ligninföreningar genom att dessa kemikalier blandades med metyl linoleate (80 vikt%). Den andra delen av denna studie genomfördes på oljor som oxiderades på trä (gran). Detta genomfördes med hjälp av metyl linoleate, metyl oleat och Linola® på trä. FT-IR och olika NMR karaktäriseringsmetoder användandes i den sista delen av detta arbete. Resultaten visar ett flertal nya faktorer rörande den kemiska och fysikaliska samverkan mellan impregnerande olja och trä som har betydelse för ett optimalt fungerande skydd. Modellstudier mellan torkande oljor och olika ligninkomponenter visar att det sker en kemisk samverkan mellan ligninet och oljorna under oxidationsprocessen. En mycket viktig faktor är att oljan oxideras men att även en del av ligninstrukturerna förändras kemisk under denna process. Slutsatsen är att ligninet påverkar torkhastigheten hos oljan men att oxidationen av oljan också påverkar nedbrytning av ligninet. Studierna visar dock att ingen mätbar mängd olja reagerar kemisk med lignin dvs. oljan fastnar inte genom en kemisk koppling till lignin. NMR studier visar att olika oljor i trä är olika reaktiva, exempelvis reagerar linolja snabbt men merparten av dessa oxidationsreaktioner leder inte till att oljan immobilseras på en molekylär nivå. Mindre reaktiva oljor å andra sidan (exempelvis oljor med hög oljesyrahalt) torkar långsammare men att detta leder till att en större andel immobiliserad olja. Genom att använda trämodellföreningar minimeras komplexiteten av alla element som normalt finns i trä. Från denna studie kan man dra slutsatsen att olika träkomponenter, t.ex. olika kemiska strukturer påverkar olja torkningsprocessen på olika sätt. Fettsyrans kolkedjor påverkar inte bara oljans struktur under sin torkningsmekanism utan även det omgivande trämaterialet. / QC 20110429
|
37 |
Nanocelluloses - surface modification and use in functional materialsSalajková, Michaela January 2012 (has links)
Cellulose nanocomposites offer interesting potential in terms of improved properties and new functionalities compared with microcomposites. Preparation from colloidal suspensions is promising, since high reinforcement content is possible and a wide range of constituents can be used. In the first study, the challenge is to form a stable suspension of well-dispersed carbon nanotubes (CNT) and nanofibrillated cellulose (NFC) in water and to prepare commingled high CNT content nanopaper structures by filtration. Various surfactants were used to modify CNT. The NFC was stabilized by charged carboxylate groups. A nonylphenol phosphate ester surfactant, NPPE, worked well for CNT and provided a stable and well-dispersed water suspension of CNT and NFC. Field emission scanning electron microscopy (FE-SEM), porosimetry and atomic force microscopy (AFM) were used to characterize nanopaper structure, and tensile properties were measured as well as surface resistivity. The processing route is water based and it is possible to prepare thin coatings as well as thicker films with a combination of low surface resistivity, flexibility in bending and high strength and toughness in tension. As inspired by organo-modified layered silicates, the objective of the second study is to develop an environmentally friendly procedure for the surface modification of cellulose nanocrystals, CNC, using quaternary ammonium salts via adsorption. In order to obtain higher surface charge density on CNC, a new route is developed for preparation of CNC with carboxylic acid groups. Quanternary ammonium cations bearing alkyl, phenyl, glycidyl, and diallyl groups are used to modify CNC to render their surface more hydrophobic. The structure and surface hydrophobicity of unmodified and modified CNC as well as their dispersibility in organic solvent are characterized by AFM, FE-SEM, Fourier-transformed infrared spectroscopy (FT-IR), X-Ray analysis (XDR) and contact angle measurement (CAM). Future work will focus on surface-modified nanocelluloses in composite materials, in order to learn more about surface treatment effects on nanocomposite properties. / Nanokompositer från cellulosa har potential att ge starkt förbättrade egenskaper och ny funktionalitet jämfört med mikrokompositer. De ger även möjlighet till komposittillverkning från kolloidala suspensioner där man kan uppnå hög halt av förstärkningsfasen. Det är också möjligt att välja från en bred flora av lösliga och dispergerbara materialkomponenter. I första studien är utmaningen att skapa en stabil och väldispergerad suspension av kolnanorör (CNT) och nanofibrillerad cellulosa (NFC) i vatten för att genom filtrering framställa nanopapper med interpenetrerande CNT och NFC nätverk. Olika ytaktiva ämnen användes för att modifiera CNT. NFC stabiliserades genom laddade karboxylgrupper på ytan. En nonylfenol fosfatester, NPPE, fungerade bra för CNT och resulterade i en stabil och väldispergerad vattensuspension av CNT och NFC. FE-SEM, densitometri och AFM användes för att karakterisera nanopapperstruktur. Mekaniska egenskaper och ytresistivitet mättes. Processen för framställning av CNT/NFC nanopapper är vattenbaserade och det är möjligt att framställa tunna ytbeläggningar likväl som tjockare filmer. Dessa strukturer har en kombination av låg resistivitet, flexibilitet i böjning liksom hög hållfasthet och seghet i dragbelastning. Syftet med den andra studien är att utgå från organo-modifierade skiktade silikater (leror) för att utveckla en miljövänlig ytmodifieringsmetod för nanocellulosa. För att öka ytladdningstätheten på CNC (nanokristaller från cellulosa) utvecklas ett nytt sätt att skapa karboxylgrupper på ytan. Kvarternära ammoniumsalter med alkyl, fenyl, glycidyl och diallylgrupper används för att göra ytan på CNC mer hydrofob. Ytans struktur och hydrofoba karaktär, liksom dispersionsegenskaper i organiska lösningsmedel, karakteriseras med hjälp av AFM, FE-SEM, FT-IR, XDR och kontaktvinkelmätning. Fortsatt arbete kommer att fokusera på ytmodifierad cellulosa i kompositmaterial, för att utveckla förståelsen för effekter av ytmodifiering på nanokompositers egenskaper / <p>QC 20120302</p>
|
38 |
Enhancing UV-protection of clear coated wood by utilizing reactive UV-absorber and epoxyfunctionalized soybean oilOlsson, Sara January 2012 (has links)
This work presents the development of a new pretreatment for clear coated wood, that aims to increase the photoprotection of exterior wood products, and at the same time make the system more environmentally friendly. The pretreatment comprises the reactive UV absorber 2-hydroxy-4(2,3-epoxypropoxy)-benzophenone (HEPBP), which has a primary epoxy group that can be covalently attached to the hydroxyl groups of the wood substrate. This reactant is accompanied by renewable epoxy functionalized soybean oil (ESBO), which contains a secondary epoxy group that also has the ability to react with the substrate and that promotes the compatibility between the two reactants. The ESBO further seems to have the advantage of increasing the flexibility of the pretreated veneers as well as decreasing the amount of water in the cell wall of the wood. The study was performed in two parts where the first part focused solely on the development and performance of the pretreatment, whereas the second part used the knowledge gained from part one to evaluate the pretreatment in combination with an acrylic clear coating. Grafting reactions were performed on thin wood veneers heated in solvent. In the first part the reaction parameters, temperature and reaction time, were varied to study their effects on the final properties of the pretreatments. The veneers where then analyzed using FTIR to determine if grafting was achieved. Results show that grafting was successful for reactions performed at temperatures above 90 °C. For part two, grafting was successful for both the boil- and dip process, indicating that a considerably shorter reaction time can be used. Samples from both part one and two where then exposed to accelerated ageing and the color change was measured to estimate the UV-resistance. The first part showed improved UV-resistance for some of the pretreatments, whereas the second part was more difficult to evaluate due to the top coat, but a slight improvement can be seen for samples using the pretreatment. A positive result for part two is also that the pretreatment do not appear to affect the adhesion between the substrate and the top coat. It is hence concluded that the proposed pretreatment is a possible way of increasing the photostability of exterior wood. / Detta arbete beskriver utvecklandet av en ny förbehandling för klarlackat trä som syftar till att öka UV-beständigheten av träprodukter för utomhusbruk. Arbetet syftar även till att utveckla systemet till att bli miljövänligare än nuvarande liknande produkter på marknaden. Förbehandlingen utnyttjar primära epoxidgrupper hos den reaktiva UV-absorbenten 2-hydroxy-4(2,3-epoxypropoxy)-bensofenon (HEPBP) för att skapa kovalenta bindningar till hydroxylgrupper hos träet. Den andra komponenten i systemet är förnyelsebar epoxiderad sojaolja (ESBO) innehållande sekundära epoxidgrupper som även dessa kan binda kovalent till träytan, samt gynna kompatibiliteten mellan de två reaktanterna. Oljan verkar dessutom öka flexibiliteten av förbehandlingen, samtidigt som den minskar mängden vatten som tränger in i cellväggen. Studien utfördes i två delar där den första delen fokuserade enbart på att utveckla förbehandlingen, medan den andra delen utnyttjade information från den första delen för att utvärdera funktionen av förbehandlingen i kombination med en akrylatbaserad klarlack. Ympningsreaktionerna utfördes på tunna träfaner i uppvärmd lösning. I första delen studerades hur temperatur- och reaktionstidsförändringar påverkar den slutgiltiga prestationen av förbehandlingen, och FTIR användes då för att verifiera ympningen. Resultaten visar att ympningen var lyckad för reaktioner utförda vid reaktionstemperaturer över 90 °C. För del två ansågs ympningen lyckad för både dopp- och kokreaktionen, vilket tyder på att betydligt kortare reaktionstider skulle kunna användas. Prover från både del ett och två utsattes sedan för accelererad åldring där färgförändringen av proverna mättes för att uppskatta UV-resistensen av behandlingarna. Första delen visade på ökad UV-beständighet för vissa av behandlingarna. Del två var dock svårare att utvärdera till följd av klarlacken, men en liten förbättring kan noteras för prover som är förbehandlade. En positiv notering från del två är även att adhesionen mellan klarlacken och träytan inte verkar ha påverkats av förbehandlingen. Med detta som grund dras slutsatsen att den föreslagna förbehandlingen kan förbättra UV-resistensen av klarlackat trä för utomhusbruk. / QC 20120330
|
39 |
Xyloglucan modification using controlled polymer grafting for biocomposite applicationsMarais, Andrew January 2010 (has links)
No description available.
|
40 |
Terpenes as renewable monomers for biobased materials / Terpener som förnyelsebara monomerer för biobaserade materialNorström, Emelie January 2011 (has links)
With the ambition to decrease the utilization of fossil fuels, a development of those raw materials that today only are seen as waste products is necessary. One of those waste products is turpentine. Turpentine is the largest natural source of terpenes in the world today. The main components are the terpenes α-pinene, β-pinene and 3-carene. In this project, different polymerisation techniques have been evaluated to polymerise limonene with the aim to make a material out of the green raw material, turpentine. Limonene is a terpene that can be found in turpentine. It has a planar structure and should work as a model for other terpenes. Previous work on polymerising terpenes has focused on succeeding with performing polymerisations of terpenes utilizing the techniques of cationic polymerisation and radical polymerisation. However, this has been done without the aim to make a material out of the polymers. In this project, on the other hand, the main focus has been to obtain a polymer that can be used as a basis for a material. Techniques that have been applied are: radical polymerisation, cationic polymerisation and thiol-ene polymerisation. In this study, attempts to homopolymerise limonene and also copolymerise it with other synthetic monomers, such as styrene, have been performed with both radical polymerisation and cationic polymerisation. The procedure for the radical polymerisation has been conducted following the work by Sharma and Srivastava. [1] Even though several articles have been published about radical copolymerisations of limonene with other synthetic monomers, the radical polymerisations have not succeeded in this project. Further, the technique of thiol-ene chemistry has shown that limonene can be used in polymerisations; limonene reacts spontaneously with 2-mercaptoethyl ether forming a viscous polymer. The obtained polymers have been characterized with proton nuclear magnetic resonance(1H-NMR), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy.
|
Page generated in 0.0658 seconds