• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 12
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 130
  • 29
  • 18
  • 17
  • 17
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Genetic association of islet amyloid polypeptide (IAPP) encoding pathways in pancreatic beta-cells with type 2 diabetes complemented by functional study. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Lam, Kwok Lim. / "October 2010." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 142-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
82

Cloning and characterization of neuropeptide Y receptors of the Y<sub>1</sub> subfamily in mammals and fish

Starbäck, Paula January 2000 (has links)
<p>Neuropeptide Y (NPY) is an abundant neurotransmitter in the nervous system and forms a family of evolutionarily related peptides together with peptide YY (PYY), pancreatic polypeptide (PP) and polypeptide Y (PY). These peptides are ligands to a family of receptors that mediate a wide range of physiological effects including stimulation of appetite. This work describes the molecular cloning of four novel NPY receptors.</p><p>In rat a receptor called PP1, later renamed Y<sub>4</sub>, was cloned and characterized. It displays the highest amino acid sequence identity to the Y<sub>1</sub> receptor. Rat Y<sub>4</sub> differs extensively from human Y<sub>4</sub>, cloned subsequently, in both pharmacological properties, tissue distribution, and amino acid sequence with only 75% identity. Rat and human Y<sub>4 </sub>are the most diverged orthologues in the NPY receptor family.</p><p>In guinea pig, the y<sub>6</sub> receptor gene was found to be a pseudogene with several frameshift mutations. The gene is a pseudogene in human and pig too, but seems to give rise to a functional receptor in mouse and rabbit. This unusual evolutionary situa- tion may be due to inactivation of the gene in a mammalian ancestor and then restoration of expression in mouse and rabbit, but perhaps more likely due to independent inactivations in guinea pig, human and pig.</p><p>In zebrafish, two new intronless receptor genes were cloned. Sequence comparisons suggest that both receptors are distinct from the mammalian receptors Y<sub>1</sub>, Y<sub>4</sub> and y<sub>6</sub>, hence they were named Ya and Yb. Chromosomal localization provides further support that Ya and Yb may be distinct subtypes. </p><p>The discoveries of the rat Y<sub>4</sub> and zebrafish Ya and Yb receptors were unexpected and show that the NPY receptor family is larger than previously thought.</p>
83

Targeting Biological Systems by Organic Synthesis Methods - Cancer Cells and Proteins

Winander, Cecilia January 2008 (has links)
<p>This thesis describes the design and synthesis of molecules with potential roles in biomedicine, with an emphasis on molecular recognition in complex biological environments. The first chapter describes the synthesis and evaluation of compounds for use in nuclide therapy. Carboranes are frequently used in the development of drugs for Boron Neutron Capture Therapy. New routes for monohydroxylation at the B and C atoms of <i>p</i>-carborane have been developed. The Suzuki-Miyaura reaction has been applied to the cross-coupling of <i>bis</i>(neopentyl glycolato)diboron or <i>bis</i>(pinacolato)diboron and 2-I-<i>p</i>-carborane. The synthesized derivatives are important intermediates in the synthesis of a number of potentially biologically active carborane-containing molecules.</p><p>The DNA intercalator doxorubicin has been functionalized to enable <sup>125</sup>I labelling. The aim of combining the DNA intercalator with <sup>125</sup>I was to achieve high delivery of cytotoxic radiation to the nucleus. The DNA-binding ability and cellular uptake of the synthesized compounds have been evaluated. One of the compounds bound strongly to DNA and had similar cellular uptake as daunorubicin, which makes the compound very interesting for further biological evaluation.</p><p>The second chapter describes the use of polypeptide conjugates to broaden our knowledge of molecular recognition. The polypeptides consist of 42 amino acids each and are designed to fold into helix-loop-helix motifs that dimerize due to their amphiphilic character. The polypeptides are combined with a variety of small organic molecules. The incorporation of small aromatic molecules to influence the structure and dynamics of a polypeptide has been investigated. By attaching a dansyl group to the side chain of a lysine residue, the dynamics of the protein’s hydrophobic core where affected to such a degree that a native-like fold was formed. The polypeptide conjugates have also been used to study the binding and recognition of native proteins. High-affinity binders for chitinases and acetylcholine esterase have been developed and evaluated.</p>
84

Targeting Biological Systems by Organic Synthesis Methods - Cancer Cells and Proteins

Winander, Cecilia January 2008 (has links)
This thesis describes the design and synthesis of molecules with potential roles in biomedicine, with an emphasis on molecular recognition in complex biological environments. The first chapter describes the synthesis and evaluation of compounds for use in nuclide therapy. Carboranes are frequently used in the development of drugs for Boron Neutron Capture Therapy. New routes for monohydroxylation at the B and C atoms of p-carborane have been developed. The Suzuki-Miyaura reaction has been applied to the cross-coupling of bis(neopentyl glycolato)diboron or bis(pinacolato)diboron and 2-I-p-carborane. The synthesized derivatives are important intermediates in the synthesis of a number of potentially biologically active carborane-containing molecules. The DNA intercalator doxorubicin has been functionalized to enable 125I labelling. The aim of combining the DNA intercalator with 125I was to achieve high delivery of cytotoxic radiation to the nucleus. The DNA-binding ability and cellular uptake of the synthesized compounds have been evaluated. One of the compounds bound strongly to DNA and had similar cellular uptake as daunorubicin, which makes the compound very interesting for further biological evaluation. The second chapter describes the use of polypeptide conjugates to broaden our knowledge of molecular recognition. The polypeptides consist of 42 amino acids each and are designed to fold into helix-loop-helix motifs that dimerize due to their amphiphilic character. The polypeptides are combined with a variety of small organic molecules. The incorporation of small aromatic molecules to influence the structure and dynamics of a polypeptide has been investigated. By attaching a dansyl group to the side chain of a lysine residue, the dynamics of the protein’s hydrophobic core where affected to such a degree that a native-like fold was formed. The polypeptide conjugates have also been used to study the binding and recognition of native proteins. High-affinity binders for chitinases and acetylcholine esterase have been developed and evaluated.
85

Functional Studies of the Neuropeptide Y System : Receptor-Ligand Interaction and Regulation of Food Intake

Åkerberg, Helena January 2009 (has links)
The members of the mammalian neuropeptide Y family, i.e. the peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP), are all involved in regulation of food intake. In human and most other mammals they act via receptors Y1, Y2, Y4 and Y5. NPY is released in the hypothalamus and is one of the strongest appetite-stimulating neurotransmitters whereas PP and PYY are secreted from gut endocrine cells after meals and function as appetite-reducing hormones. This thesis describes studies of the NPY system at both the molecular and the physiological level. The first part describes two investigations of receptor-ligand interactions with the human Y1 and Y2 receptors. The results clarify the importance of several amino-acid residues of the human Y1 receptor. Three amino acids previously suggested by others to form a binding pocket for the carboxy-terminus of the peptide were confirmed to be crucial for interaction with peptide ligands. However, they were found to be too distantly located from each other to be able to form a binding pocket. Further investigation of the three corresponding positions in the human Y2 receptor showed that only one of the positions was important for interaction with full-length peptides. The results indicate overlapping but, surprisingly, non-identical binding of the different peptides to human Y1 and Y2 receptors, despite the fact that the two receptors share a common ancestor. The second part of the thesis describes an investigation of the effect of PP on food intake in six beagle dogs and a test for personality characteristics in dogs (TFPC). Treatment with physiological doses of PP decreased both the appetitive and the consummatory drive but had no effect on the amount food consumed. The TFPC protocol was used to map individual behavioral differences in a population of sixteen beagle dogs. The test, which included several situations that may appear in an experimental study, revealed considerable inter-individual differences in behavioral responses despite the fact that the dogs were born and housed in the same animal facility in constant controlled conditions. These results demonstrate that PP can influence food intake in distantly related mammals and emphasize the importance of considering differences in personality in experimental animals.
86

Cloning and characterization of neuropeptide Y receptors of the Y1 subfamily in mammals and fish

Starbäck, Paula January 2000 (has links)
Neuropeptide Y (NPY) is an abundant neurotransmitter in the nervous system and forms a family of evolutionarily related peptides together with peptide YY (PYY), pancreatic polypeptide (PP) and polypeptide Y (PY). These peptides are ligands to a family of receptors that mediate a wide range of physiological effects including stimulation of appetite. This work describes the molecular cloning of four novel NPY receptors. In rat a receptor called PP1, later renamed Y4, was cloned and characterized. It displays the highest amino acid sequence identity to the Y1 receptor. Rat Y4 differs extensively from human Y4, cloned subsequently, in both pharmacological properties, tissue distribution, and amino acid sequence with only 75% identity. Rat and human Y4 are the most diverged orthologues in the NPY receptor family. In guinea pig, the y6 receptor gene was found to be a pseudogene with several frameshift mutations. The gene is a pseudogene in human and pig too, but seems to give rise to a functional receptor in mouse and rabbit. This unusual evolutionary situa- tion may be due to inactivation of the gene in a mammalian ancestor and then restoration of expression in mouse and rabbit, but perhaps more likely due to independent inactivations in guinea pig, human and pig. In zebrafish, two new intronless receptor genes were cloned. Sequence comparisons suggest that both receptors are distinct from the mammalian receptors Y1, Y4 and y6, hence they were named Ya and Yb. Chromosomal localization provides further support that Ya and Yb may be distinct subtypes. The discoveries of the rat Y4 and zebrafish Ya and Yb receptors were unexpected and show that the NPY receptor family is larger than previously thought.
87

Gastric Bypass in Morbid Obesity : Postoperative Changes in Metabolic, Inflammatory and Gut Regulatory Peptides

Holdstock, Camilla January 2008 (has links)
This thesis examines the effect of surgical weight loss on gut and adipose tissue peptides involved in appetite regulation and energy homeostasis in morbidly obese humans. Roux-en-Y gastric bypass (RYGBP) is the gold standard operation used for effective long-term weight loss and improved health. The exact mechanisms for this outcome are under investigation. We measured ghrelin, a recently discovered hunger hormone, insulin, adiponectin and leptin along with anthropometry measures in 66 morbidly obese patients prior to and 6 and 12 months after RYGBP. Impressive weight loss occurred postoperatively as did alterations in the peptides. Consistent correlations were found between weight, leptin, ghrelin and insulin. The main findings were low ghrelin concentrations in obesity and an increase after RYGBP. We explored inflammatory proteins C-reactive protein (CRP), serum amyloid A and interleukin-6 before and during massive weight loss 6 and 12 months after RYGBP in morbidly obese subjects. The studied proteins declined after surgery and a correlation between CRP and homeostatic model of assessment for insulin resistance, independent of BMI, strongly linked insulin resistance and inflammation. CRP declined most in insulin-sensitive subjects. We examined the excluded stomach mucosa and vagus nerve by measuring gastrin, pepsinogen I (PGI), pancreatic polypeptide (PP) and ghrelin levels during week 1 and year after RYGBP. Ghrelin levels rose with weight loss but declined 24-hours after surgery, like PP, indicating transient vagal nerve damage. Low levels of gastrin and PGI suggest a resting mucosa. We evaluated gut peptides: peptide YY (PYY), glucaogon like peptide-1 (GLP-1), pro-neurotensin (pro-NT) and PP, in lean (young and middle-aged), obese and postoperative RYGBP subjects pre- and postprandially. RYGBP subjects had exaggerated levels of PYY and GLP-1 postprandially and higher basal proNT levels, implying a ‘satiety peptide tone’ that may contribute to the maintenance of weight loss. In summary, RYGBP results in marked weight loss and alterations in gut and adipose tissue peptides involved in appetite regulation and energy homeostasis. These postoperative peptide changes may contribute to impressive weight loss observed after RYGBP.
88

Polypeptide Conjugates as High-affinity Binders for Proteins

Tollstoy Tegler, Lotta January 2009 (has links)
A novel concept for protein recognition has been developed. The recognition unit is a hybrid molecule obtained by conjugation of a small organic molecule to a synthetic polypeptide selected from a 16-membered set of 42 amino acid residue sequences. The sequences are unordered and have no prior relation to the target proteins. The concept is based on the hypothesis that a small set of sequences capable of hydrophobic interactions, hydrogen bonding and electrostatic interactions can yield a binder for any selected protein, provided that the small molecule shows medium affinity or better and is reasonably selective. The concept has been illustrated by the design, synthesis and evaluation of binders for three different proteins, the C-reactive protein, CRP, human Carbonic anhydrase II, HCAII, and Acetylcholine esterase, AChE. Highly efficient binders for CRP have been developed by conjugation of a derivative of the natural ligand, phosphocholine, to the side chain of one of the amino acids in each polypeptide. The binders in the set show a wide range of affinities for CRP and the tightest binder, 4-C10L17-PC6, binds almost irreversibly. Selected binders have been evaluated in human serum, where they capture CRP with high selectivity.High-affinity binders have been developed for HCAII, and the selectivity evaluated by extraction of the protein from blood. The binder 4-C37L34-B, a polypeptide conjugated to a spacered benzenesulphonamide residue, was able to extract Carbonic anhydrases specifically and to discriminate between the two isoforms of human Carbonic anhydrase. The conjugation of an acridine derivative to a polypeptide via a 14 atom spacer has been shown to yield a binder with high affinity and selectivity for AChE. The selectivity was demonstrated by extraction of AChE from Cerebrospinal fluid. This thesis focuses on the development of a fast and reliable procedure for the construction, selection and evaluation of protein binders, with the ambition to develop a technology that is applicable to the development of binders for all proteins.
89

Gold Nanorod-based Assemblies and Composites: Cancer Therapeutics, Sensors and Tissue Engineering Materials

January 2012 (has links)
abstract: Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to superior optical property in the near infrared (NIR) window. Light absorbed by the nanorod can be dissipated as heat efficiently or re-emitted by the particle. However, the limitations for clinical translation of gold nanorods include low yields, poor stability, depth-restricted imaging, and resistance of cancer cells to hyperthermia, are severe. A novel high-throughput synthesis method was employed to significantly increase in yields of solid and porous gold nanorods/wires. Stable functional nanoassemblies and nanomaterials were generated by interfacing gold nanorods with a variety of polymeric and polypeptide-based coatings, resulting in unique properties of polymer-gold nanorod assemblies and composites. Here the use of these modified gold nanorods in a variety of applications including optical sensors, cancer therapeutics, and nanobiomaterials were described. / Dissertation/Thesis / Ph.D. Chemical Engineering 2012
90

Exploring molecular interactions between polypeptide conjugates and protein targets : Manipulating affinity by chemical modifications

Balliu, Aleksandra January 2017 (has links)
In this thesis molecular interactions between polypeptide conjugates and protein targets were investigated. Polypeptides were derivatized with small organic molecules, peptides and oligonucleotides. New strategies were developed with the aim to increase affinities for proteins of biological interest. A 42-residue polypeptide (4-C15L8) conjugated to a small organic molecule 3,5-bis[[bis(2-pyridylmethyl)amino]methyl]benzoic acid (PP1), was shown to bind glycogen phosphorylase a (GPa) in the presence of zinc ions. Under the assumption that hydrophobic interactions dominated the binding energy, the hydrophobic residues of 4-C15L8-PP1 were systematically replaced in order to study their contribution to the affinity enhancement. The replacement of the Nle, Ile and Leu residues by Ala amino acids reduced affinities. The introduction of non-natural L-2-aminooctanoic acid (Aoc) residues into the peptide sequence enhanced the binding affinity for GPa. A decreased KD of 27nM was obtained when Nle5, Ile9 and Leu12 were replaced by Aoc residues, in comparison to the KD value of 280nM obtained for the unmodified 4-C15L8-PP1. It is evident that there are non-obvious hydrophobic binding sites on the surfaces of proteins that could be identified by introducing the more hydrophobic and conformationally flexible Aoc residues. The downsizing of the 42-mer peptide to an 11-mer and the incorporation of three Aoc residues gave rise to a KD of 550 nM, comparable to that of  4-C15L8-PP1 suggesting that bioactive peptides can be downsized by the introduction of Aoc. Aiming to improve in vivo stability, the affinity for human serum albumin (HSA) of hydrophobic, positively and negatively charged polypeptide-PP1 conjugates was evaluated. Increased hydrophobicity due to the introduction of Aoc residues did not significantly increase the affinity for HSA. No binding was observed in the case of the most negatively charged polypeptides whereas the slightly negatively and positively charged polypeptides conjugated to PP1 bound HSA with affinities that increased with the positive charge. It was found that polypeptide-PP1 conjugates target the zinc binding site of the HSA. Affinity enhancement was obtained due to the incorporation of PP1 and increased by charge to charge interactions between the positively charged amino acids of the polypeptide and the negatively charged residues of HSA, in close proximity to the HSA zinc binding site. The survival times of the peptide-PP1 conjugates in human serum were extended as a result of binding to HSA. Zn2+ ion chelating agents can be incorporated in potential peptide therapeutics with a short plasma half-life, without increasing their molecular weights.

Page generated in 0.2433 seconds