• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 12
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 130
  • 29
  • 18
  • 17
  • 17
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Remodeling of the Guinea Pig Intrinsic Cardiac Plexus With Chronic Pressure Overload

Hardwick, Jean C., Baran, Caitlin N., Southerland, E. Marie, Ardell, Jeffrey L. 01 September 2009 (has links)
Chronic pressure overload (PO) is associated with cardiac hypertrophy and altered autonomic control of cardiac function, in which the latter may involve adaptations in central and/or peripheral cardiac neural control mechanisms. To evaluate the specific remodeling of the intrinsic cardiac nervous system following pressure overload, the descending thoracic aorta artery of the guinea pig was constricted ∼20%, and the animals recovered for 9 wk. Thereafter, atrial neurons of the intrinsic cardiac plexus were isolated for electrophysiological and immunohistochemical analyses. Intracellular voltage recordings from intrinsic cardiac neurons demonstrated no significant changes in passive membrane properties or action potential depolarization compared with age-matched controls and sham-operated animals, but afterhyperpolarization duration was increased in PO animals. Neuronal excitability, as determined by the number of action potentials produced with depolarizing stimuli, was differentially increased in phasic neurons derived from PO animals in response to exogenously applied histamine compared with sham and age-matched controls. Conversely, pituitary adenylate cyclase-activating polypeptide-induced increases in intrinsic cardiac neuron evoked AP frequency were similar between control and PO animals. Immunohistochemical analysis demonstrated a two-fold increase in the percentage of neurons immunoreactive for neuronal nitric oxide synthase in PO animals compared with control. The density of mast cells within the intrinsic cardiac plexus from PO animals was also increased twofold compared with preparations from control animals. These results indicate that congestive heart failure associated with chronic pressure overload induces a differential remodeling of intrinsic cardiac neurons and upregulation of neuronal responsiveness to specific neuromodulators.
92

Direct evidence for the age-dependent demise of GNAS-mutated cells in oral fibrous dysplasia / 顎顔面領域に発症した線維性異形成症における加齢に伴うGNAS変異細胞の減少

Isobe, Yuu 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21618号 / 医博第4424号 / 新制||医||1033(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 大森 孝一, 教授 松田 秀一, 教授 安達 泰治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
93

Next-generation Protein Sequencing (NGPS) For Determining Complete Sequences for Unknown Proteins and Antibodies

Howard, Alexis S. 01 January 2021 (has links)
Next-Generation protein sequencing (NGPS) creates newfound ways of fully identifying every protein species in a single biological organism. It is an effort to use technology to determine proteomic data. The purpose of this research project is to use the current technology to sequence proteins and potentially find treatments for some diseases that are common today. Through NGPS, scientists can identify low abundant proteins including those that go through post-translational modifications (PTM) [1]. NGPS will allow us to fully determine protein sequences from protein samples using mass spectrometry with the ultimate goal of being able to determine the primary sequence of the protein in the given sample [1]. Antibodies are a specific class of proteins that aid our bodies in the immune response. Due to their variability in the complementary-determining region (CDR), NGPS will be used to determine the heavy and light chain sequences [2]. The goal of this technology is to fully determine the primary sequence of a protein in a given sample. The randomness of an antibody’s variable (V), diversity (D), and joining (J) genes (VDJ recombination) makes each protein unique. VDJ recombination refers to the process of T cells and B cells randomly assembling different gene segments. This process allows the antibody to make specific receptors that can recognize different molecules presented on the surface of antigens. Proteases are enzymes that break down proteins and peptides. By using different proteases with varying cutting rules, we can digest the antibody and run it through high mass accuracy determining instrument [1]. NGPS allows us to utilize mass spectrometry technology to measure proteins or polypeptides. Because of these measurements, post-translation modifications, including glycosylation, can be detected, unlike in DNA sequencing technology. Protein sequencing has the opportunity to play a major role in the fight against the COVID-19 outbreak and serve as curative measures for the treatment and Type 2 Diabetes [3]. Proteomics can serve as the basis of vaccine development as well as monitoring treatment. Utilizing techniques such as mass spectrometry could reveal the structure of the virus and ultimately allow for engineered tissues to produce the protein in large amounts in a lab setting. Currently, many companies are utilizing highly sensitized technology to carry out the goals of NGPS. The Oxford Nanopore is a company that uses technology to develop and explore more ways to undergo protein analysis. The methods used by this company involve using protein nanopores to mutate residues in pores to determine the overall sequence. The company utilizes modified aptamers that are drawn to the nanopore current. These aptamers can bind with some, but not all pores, allowing for the differentiation between target and non-target proteins. Nicoya Life Sciences is another company that uses Open Surface Plasmon Resonance (SPR) to detect molecular interactions. SPR uses an analyte (a mobile molecule) to bind to a ligand and observe changes in the refractive index. SPR allows researchers the ability to characterize the binding kinetics and affinities of monoclonal antibodies. SPR is an extremely promising technique to sequence proteins due to its flexibility in being able to work with a variety of molecules including lipids, nucleic acids, cells, viruses, nanoparticles, proteins, antibodies, carbohydrates, and more. The original goal behind NGPS was to establish a method to sequence proteins to aid in the early detection of common diseases such as Type 2 Diabetes. After significant research, it is now known that NGPS can be done in a variety of ways to accomplish a common goal—sequencing proteins and understanding how amino acids affect the human body. In the case of diseased states, NGPS can help researchers find ways to diagnose, treat, and cure diseases early on. Focusing on antibodies allows us to manipulate the body’s immune response to rid the host of pathogens. NGPS, however, is advancing at a much slower rate than anticipated by companies due to its many limitations including not being able to sequence large peptides, difficulties in material and composition of the sample, and needing to label small peptides to begin degradation. Ideally, finding a way to combine the high accuracy and specificity of certain techniques, the ability to detect low abundant proteins in others, and the flexibility of Open SPR would allow researchers and companies to create the standard for NGPS. Creating effective antibodies is precisely why NGPS has such great potential today. Ultimately, I found that as a standalone, Open SPR is the most effective method. However, as the research shows, there are limitations with each method, including Open SPR. The conclusion shows that it is necessary to find a combination of these techniques and create an accurate method, potentially using different technologies, to establish the most effective way to sequence proteins.
94

The Effects of Duodenal-jejunal Bypass on Glucose Homeostasis

Kindel, Tammy Lyn 29 November 2010 (has links)
No description available.
95

MECHANISMS OF METHOTREXATE SECRETION AND DETOXIFICATION BY MALPIGHIAN TUBULES OF DROSOPHILA MELANOGASTER

Chahine, Sarah S. 10 1900 (has links)
<p>Insects are continually exposed to potentially toxic endogenous compounds and xenobiotics that require rapid elimination from the body. Xenobiotic resistance in insects has evolved predominantly by increasing the activity of detoxification enzymes and/or by increasing toxin excretion via the Malpighian (renal) tubules. The tubules have long been known to transport organic anions at high rates. This thesis examines the mechanisms of excretion and detoxification of the organic anion methotrexate (MTX) by isolated tissues of the fruit fly <em>Drosophila melanogaster</em>. A radioisotope tracer technique and the Ramsay assay were used to measure MTX secretion. Quantitative PCR (qPCR) was used to evaluate the expression of the genes for putative organic anion transporters. My results show that MTX transport across the Malpighian tubule epithelium is active, saturable, Na<sup>+</sup>-independent and inhibited by a wide range of organic anions including MK-571, probenecid and Texas Red. Pharmacological studies and qPCR analyses suggest multiple transporters are involved in the movement of MTX across the Malpighian tubules. Moreover, chronic exposure of larvae to dietary MTX or salicylate dramatically increases the transepithelial transport of MTX by isolated Malpighian tubules, suggesting that excretion of MTX is upregulated by exposure to these organic anions in the diet. In addition, treatments known to increase expression of specific detoxification enzymes, such as the P450 monoxygenases (P450s) and the glutathione-S-transferases (GSTs), also led to an increase in expression levels of multidrug efflux transporter (MET), multidrug resistance like protein 1 (dMRP) as well as to increased secretion of MTX by the tubules. This latter finding suggests a coordinated response to toxin exposure, so that when detoxification pathways are increased, there is a corresponding increase in the capacity for elimination of the products of P450 and GST enzymes. Finally, the last section of this thesis has shown that RNAi knockdown of a single organic anion transporter gene in the principal cells of <em>D. melanogaster</em> Malpighian tubules is associated with reductions in the expression of multiple, functionally-related genes. Importantly, these results indicate that dMRP andMET are not the dominantMTX transporters in the tubules when flies are reared onMTX-enriched diets. However, reductions in the expression of organic anion transporting polypeptide (OATP) are associated with reduced secretion of the organic anionsMTX, fluorescein and Texas Red. Taken together, these results suggest that OATP and at least one additional transporter, as yet unidentified, are required forMTX secretion. In conclusion, the results of my research contribute to our understanding of the mechanisms of organic anion detoxification and excretion in flies exposed to dietary toxins.</p> / Doctor of Science (PhD)
96

Investigating the Electrostatic Properties and Dynamics of Amyloidogenic Proteins with Polarizable Molecular Dynamics Simulations

Davidson, Darcy Shanley 14 April 2022 (has links)
Amyloidogenic diseases, such as Alzheimer's disease (AD) and Type II Diabetes (T2D), are characterized by the accumulation of amyloid aggregates. Despite having very different amino-acid sequences, the underlying amyloidogenic proteins form similar supramolecular fibril structures that are highly stable and resistant to physical and chemical denaturation. AD is characterized by two toxic lesions: extracellular amyloid β-peptide (Aβ) plaques and intracellular neurofibrillary tangles composed of microtubule-associated protein tau. Similarly, a feature of T2D is the deposition of islet amyloid polypeptide (IAPP) aggregates in and around the pancreas. The mechanisms by which Aβ, tau, and IAPP aggregate, and cause cell death is unknown; thus, gaining greater insight into the stabilizing forces and initial unfolding events is crucial to our understanding of these amyloidogenic diseases. This work uses molecular dynamics (MD) simulations to study the secondary, tertiary, and quaternary structure of Aβ, tau, and IAPP. Specifically, this work used the Drude polarizable force field (FF), which explicitly represents electronic polarization allowing charge distributions to change in response to perturbations in local electric fields. This model allows us to describe the role charge plays on protein folding and stability and how perturbations to the charge state drive pathology. Studies were conducted to address the following questions: 1) What are the stabilizing forces of fibril and oligomeric structures? 2) How do charge-altering mutations modulate the conformational ensemble and thermodynamic properties of Aβ? 3) How do charge-altering post-translational modifications of Aβ and tau modulate changes in the conformational ensembles? These studies establish that shifts in local microenvironments play a role in fibril and oligomer stability. Furthermore, these studies found that changes in protein sequence and charge are sufficient to disrupt and change the secondary and tertiary structure of these amyloidogenic proteins. Overall, this dissertation describes how charge modulates protein unfolding and characterizes the mechanism of those changes. In the long term, this work will help in the development of therapeutics that can target these changes to prevent protein aggregation that leads to cell death. / Doctor of Philosophy / Protein aggregation is the hallmark of many chronic diseases, such as Alzheimer's disease (AD) and Type II Diabetes (T2D). The formation of two toxic aggregates: amyloid β-peptide (Aβ) plaques and neurofibrillary tangles composed of microtubule-associated protein tau are some of the key characteristics of AD. In addition, the formation of islet amyloid polypeptide (IAPP) aggregates in the pancreas is thought to play a role in the development of T2D. The pathways by which the proteins Aβ, tau, and IAPP aggregate are unknown; thus, gaining a greater insight into the properties that may cause these diseases is necessary to develop treatments. By studying these proteins at the atomistic level, we can understand how small changes to these proteins alter how they misfold in a way that promotes toxicity. Herein, we used a computational technique called molecular dynamics (MD) simulations to gain new insights into how protein structure changes. We explored the dynamics of these proteins and investigated the role that charge plays in protein folding and described how charge modulates protein folding and characterized the mechanism of those changes. This work serves as a characterization of protein folding and sets the ground for future structural studies and drug development.
97

The role of cystic fibrosis transmembrane conductance regulator in insulin secretion in pancreatic islet β-cells. / Role of cystic fibrosis transmembrane conductance regulator in insulin secretion in pancreatic islet beta-cells / CUHK electronic theses & dissertations collection

January 2013 (has links)
囊性纖維化(CF)是由囊性纖維化跨膜電導調節器(CFTR)的突變引起的一種隱性遺傳病。CF病人的肺、肝、胰腺、腸道與生殖道受到嚴重影響,其中有50%的成年病人患有糖尿病。由CF引起的糖尿病被稱為CF相關糖尿病(CFRD), 关于它的病因至今仍然存有爭議。2007年,人們發現CFTR在分泌胰島素的胰島β細胞上有表達。儘管如此,β細胞上的CFTR与糖尿病发病的关系却一直被忽略。我們的研究目標是闡述β細胞上的CFTR在胰島素分泌中的作用。 / 在β細胞上,葡萄糖刺激的胰島素分泌伴隨著複雜的電活動,這種電活動被描述為細胞膜電位去极化疊加的動作電位的爆發。葡萄糖引起的ATP敏感的鉀離子通道(K[subscript Asubscript Tsubscript P])的關閉被普遍認為是β細胞去極化的初始事件,初始的去極化啟動了電壓依賴的鈣離子通道,由此產生的鈣離子內流成為構成動作電位的去極化電流,引起了細胞內鈣離子的震盪,從而引起胰島素的釋放。雖然氯離子電流被認為參與了β細胞去極化電流,但是,人們仍然不能確定是哪一種氯離子通道介導了這個去極化電流。在我們研究的第一部分,CFTR被證明功能性的表達在β細胞上,並且可以被葡萄糖激活。CFTR可以被葡萄糖激活这一性质,在CFTR超表達的CHO 细胞上被進一步驗證。在原代培養的β細胞與β細胞株RIN-5F细胞中的葡萄糖引起的全細胞電流、膜電位的去極化、動作電位的幅度與頻率、鈣震盪和胰島素的分泌可以被CFTR的抑制劑或缺陷所降低。與野生型小鼠相比,CFTR基因敲除的小鼠,禁食之後,具有更高的血糖濃度,然而其胰島素的濃度低。 / 我們研究中的第二部分,利用了數學模型去闡明CFTR 在胰島素分泌的電活動中的角色。結果顯示, CFTR電導的減低可以使細胞的細胞膜去極化,從而導致需要更高的電刺激去引發動作電位,这些結果證明了CFTR對於维持細胞膜電位的貢獻。同時增加細胞內氯離子濃度和CFTR的電導可以引起更大頻率的膜電位的震盪,這一點證明了氯離子對於細胞膜電位震盪有著重要的作用。在数学模型中,CFTR電導的降低可以消除通過改變ATP/ADP值所引起的電火花, 這與我們在試驗中發現的CFTR參與了葡萄糖引起的動作電位是一致的。總而言之,我們的数学模型證明了CFTR對於胰島素的分泌是非常重要的,它通過介導氯離子外流對細胞膜電位的產生貢獻並且參與了電火花的產生,所有這些都進一步驗證了我們在實驗部分的發現。 / 综上所述,現有的研究揭示了CFTR,通過對β細胞膜電位作用與参与了動作電位的產生,在葡萄糖刺激胰島素分泌过程中的鮮為人知的重要角色。這個發現為揭示CFRD的病理機制提供了全新的視角,並且可能為開發治療CFRD的方法帶来了曙光。 / Cystic fibrosis (CF) is a recessive autosomal genetic disease resulted from mutations of cystic fibrosis transmembrane conductance regulator (CFTR). CF affects critically the lung, liver, pancreas, intestine and reproductive tract. CF patients also exhibit a high percentage of diabetes, which almost reach 50% in adult. The pathological cause of diabetes in CF patients, also called CF related diabetes (CFRD), is still controversial. It has been reported that CFTR expressed in the islet β cells, which is responsible for insulin secretion. However, the exact role of CFTR in islet β-cell and its relation to diabetes have been ignored. The present study aims to elucidate the role of CFTR in the process of insulin secretion by pancreatic islet β cells. / Glucose-stimulated insulin secretion is associated with a complex electrical activity in the pancreatic islet β-cell, which is characterized by a slow membrane depolarization superimposed with bursts of action potentials. Closing ATP-sensitive K⁺ channels (K[subscript Asubscript Tsubscript P]) in response to glucose increase is generally considered the initial event that depolarizes the β-cell membrane and activates the voltage-dependent Ca²⁺ channels, which constitutes the major depolarizing component of the bursting action potentials giving rise to the cytosolic calcium oscillations that trigger insulin release. While Cl⁻ has been implicated in an unknown depolarization current of the β-cell, the responsible Cl⁻ channel remains unidentified. In the first part of our study, we show functional expression of CFTR and its activation by glucose in the β-cell. Activation of CFTR by glucose was also demonstrated in CHO cell over-expression system. The glucose-elicited whole-cell currents, membrane depolarization, electrical bursts (both magnitude and frequency), Ca²⁺ oscillations and insulin secretion could be abolished or reduced by inhibitors/knockdown of CFTR in primary mouse β-cells or RIN-5F β-cell line, or significantly attenuated in isolated mouse islet β-cells from CFTR mutant mice compared to that of wildtype. Significantly increased blood glucose level accompanied with reduced level of insulin is found in CFTR mutant mice compared to the wildtype. The results strongly indicate a role of CFTR in the process of insulin secretion. / In the second part of our study, mathematical model is built up to clarify the role of CFTR in the electrical activity during insulin secretion. It is shown that reduction of CFTR conductance hyperpolarizes the membrane of the β-cell, for which it requires a larger electrical stimulus to evoke an action potential, indicating the contribution of CFTR to the membrane potential as demonstrated by our experimental results. Increase in intracellular Cl⁻ concentration and the conductance of CFTR result in higher frequency of membrane potential oscillations, demonstrating that Cl⁻ is crucial for the membrane potential oscillations. The electrical spikes induced by increase of ATP/ADP in the model are abolished by decreasing CFTR conductance, which is consistent with our findings that CFTR is involved in the generation of action potentials induced by glucose. In other word, our model demonstrates that CFTR is crucial for insulin secretion by its contribution to membrane potential and participating in the generation of electrical spikes via conducting Cl⁻ efflux, which confirms our findings in the experimental study. / Taken together, the present study reveals a previously unrecognized important role of CFTR in glucose-stimulated insulin secretion via contributing to the membrane potential and the participating in the generation of action potential in islet β cells. This finding sheds new light into the understanding of the pathogenesis of CFRD and may provide grounds for the development of new therapeutic approaches for CFRD. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Guo, Jinghui. / "December 2012." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 156-164). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / 摘要: --- p.iii / Acknowledgement: --- p.v / LIST OF PUBLICATIONS --- p.vi / Declaration --- p.viii / ABBREVIATIONS --- p.xi / LIST OF FIGURES --- p.xiii / Chapter Chapter 1: --- General introduction --- p.1 / Chapter 1.1 --- The function of islet β cells and diabetes --- p.1 / Chapter 1.1.1 --- The introduction of the pancreas --- p.1 / Chapter 1.1.2. --- Glucose metabolism and blood glucose regulation --- p.6 / Chapter 1.1.2.2 --- Blood glucose regulation --- p.7 / Chapter 1.1.3 --- Insulin secretion by the islet β cell --- p.10 / Chapter 1.1.4 --- Diabetes --- p.14 / Chapter 1.2 --- Cystic fibrosis-related diabetes --- p.17 / Chapter 1.2.1 --- Cystic fibrosis --- p.17 / Chapter 1.2.2 --- CFTR --- p.19 / Chapter 1.3 --- Mathematical model for insulin secretion --- p.25 / Chapter 1.4 --- Aim and hypothesis --- p.27 / Chapter 1.4.1 --- CFTR may be activated by glucose --- p.27 / Chapter 1.4.2 --- Activation of CFTR may depolarize the membrane potential --- p.28 / Chapter 1.4.3 --- CFTR-mediating Cl-efflux may be involved in the generation of electrical spikes --- p.28 / Chapter 1.4.4 --- Calcium oscillation depends on CFTR --- p.28 / Chapter 1.4.5 --- Insulin secretion --- p.29 / Chapter 1.5 --- Approaches to test the hypothesis --- p.29 / Chapter Chapter 2: --- Materials and Methods --- p.31 / Chapter 2.1 --- Cell culture --- p.31 / Chapter 2.1.1 --- RIN-5F cell --- p.31 / Chapter 2.1.2 --- CHO cell --- p.31 / Chapter 2.2 --- Islet isolation and culture --- p.32 / Chapter 2.3 --- CFTR knockdown --- p.33 / Chapter 2.4 --- Western blot --- p.35 / Chapter 2.5 --- Immunofluorescence --- p.37 / Chapter 2.6 --- Membrane potential (Vm) measurement --- p.38 / Chapter 2.7 --- Intracellular chloride imaging --- p.39 / Chapter 2.8 --- Intracellular calcium imaging --- p.40 / Chapter 2.9 --- Patch-clamp --- p.40 / Chapter 2.10 --- Blood glucose measurement --- p.42 / Chapter 2.11 --- Insulin ELISA --- p.42 / Chapter 2.12 --- Statistics --- p.42 / Chapter Chapter 3: --- Contribution of CFTR on the eletrophysiological properties in insulin secretion --- p.43 / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Results --- p.45 / Chapter 3.2.1 --- Functional expression of CFTR in mouse islet β cells --- p.45 / Chapter 3.2.2 --- CFTR activation by glucose --- p.46 / Chapter 3.2.3 --- Involvement of CFTR in the maintenance of membrane potential of islet β cells --- p.47 / Chapter 3.2.4 --- CFTR is involved in the generation of spikes induced by glucose --- p.50 / Chapter 3.2.5 --- Generation of spikes burst in the β cell depends on intracellular chloride. --- p.52 / Chapter 3.2.6 --- Inhibition/mutation of CFTR attenuates calcium oscillation induced by glucose --- p.53 / Chapter 3.2.7 --- Inhibition/mutation of CFTR impairs insulin secretion --- p.53 / Chapter 3.3 --- Discussion --- p.71 / Chapter Chapter 4: --- Mathematical model for the role of CFTR in the process of insulin secretion in islet β cell --- p.74 / Chapter 4.1 --- Introduction to the mathematical modeling in the process of insulin secretion --- p.74 / Chapter 4.2 --- Methods --- p.77 / Chapter 4.2.1 --- Components in the model --- p.77 / Chapter 4.2.2 --- Assumptions and approaches in modeling --- p.78 / Chapter 4.2.3 --- Modeling ion channels and transporters --- p.79 / Chapter 4.2.3.1 --- KATP channel --- p.79 / Chapter 4.2.3.2 --- Sodium channel --- p.82 / Chapter 4.2.3.3 --- Voltage Dependent calcium channel --- p.83 / Chapter 4.2.3.4 --- NCX --- p.84 / Chapter 4.2.3.5 --- Na-K pump --- p.85 / Chapter 4.2.3.6 --- Kv channel --- p.87 / Chapter 4.2.3.7 --- Ca pump --- p.88 / Chapter 4.2.3.9 --- CFTR --- p.90 / Chapter 4.2.3.10 --- NKCC --- p.91 / Chapter 4.3 --- Results --- p.93 / Chapter 4.3.1 --- Role CFTR in regulation of the basal membrane potential in β cells --- p.93 / Chapter 4.3.2 --- Role of intracellular chloride concentration in the burst spikes induced by glucose --- p.95 / Chapter 4.3.3 --- Role of CFTR in the burst spikes induced by glucose --- p.96 / Chapter 4.4 --- Discussion --- p.105 / Chapter Chapter 5: --- General discussion and conclusion --- p.109 / Chapter 5.1 --- General discussion --- p.109 / Chapter 5.1.1 --- Role of CFTR in endocrine pancreas and diabetes --- p.109 / Chapter 5.1.2 --- Role of CFTR as a cell metabolic sensor --- p.111 / Chapter 5.1.3 --- Role of CFTR in excitable cells --- p.113 / Chapter 5.2 --- Conclusion --- p.114 / Appendix A --- p.115 / Appendix B --- p.118 / Reference: --- p.156
98

Biological Applications of Elastin- and Mussel-Inspired Polymers

Sydney E. Hollingshead (5929754) 03 January 2019 (has links)
<div>Wounds are created in soft and hard tissue through surgery or disease. As the wound heals, the tissue is held in place using sutures or staples for soft tissue or plates, pins, or screws for hard tissues. These fixation methods inherently damage the surrounding healthy tissue. Surgical adhesives are a non-damaging alternative to these methods. In order to be effective, surgical adhesives must be biocompatible,</div><div>adhere strongly in a moist environment, and have mechanical properties similar to those of the native tissue.</div><div><br></div><div><div>To address the design criteria for surgical adhesives, we look to nature to find inspiration from compounds that provide these properties. Mussels use catechol-based</div><div>molecules to adhere to surfaces in wet and turbulent environments. Incorporating catechols into polymer systems can provide adhesion even in moist biological environments.</div><div>Mimics of elastomeric proteins from soft tissue can be used as backbones for soft and flexible adhesive systems. In particular, elastin-inspired proteins have a well-defined modular sequence that allows for a range of design choices. In this work, we explored the behavior of elastin- and mussel-inspired natural and synthetic polymers in biologically relevant environments.</div></div><div><br></div><div><div>First, the cytocompatibility of a catechol-containing poly(lactic acid) (cPLA) hard tissue adhesive was studied. The cPLA polymer was reacted with iron- or periodatebased</div><div>crosslinkers and compared to PLA. Fibroblasts grown directly on cPLA or cultured with leachate from cPLA had high viability but slower growth than cells on PLA. The periodate crosslinker was significantly cytotoxic, and cells grown on cPLA crosslinked with periodate had reduced metabolism and slowed growth. Cells grown on or in leachate from iron-crosslinked cPLA had similar viability, metabolism, and growth to cells on or in leachate from cPLA. The iron-crosslinked cPLA is a promising</div><div>cytocompatible adhesive for hard tissue applications.</div></div><div><br></div><div><div>Second, two elastin-like proteins (ELP) were developed that had pH-sensitive properties in solution and when crosslinked into hydrogels. Both ELPs had a large number of ionizable tyrosine and lysine residues, and one design also had a large number of ionizable histidine and aspartic acid residues. The stiffness of the hydrogels was maximized at pH values near the isoelectric point of the protein. The stoichometric ratio of crosslinker used affected hydrogel stiffness but did not significantly alter the pH-sensitivity of the gel. The crosslinked gel shrank when swelled at physiological pH. The pH-sensitive mechanical properties of hydrogels made from the two ELPs did not vary significantly. The tyrosine and lysine residues in one ELP were also</div><div>chemically blocked through acetylation to lower the isolectric point of the protein. The acetylated hydrogels had maximum stiffness at a pH near the isoelectric point of the acetylated ELP. The stiffness of both the native and acetylated gels were within the range of soft tissue. Through a combination of crosslinker ratio and chemical modification, the pH-responsive properties of the elastin-inspired hydrogels could be tuned.</div></div><div><br></div><div><div>Finally, adhesive proteins were created that were inspired by both elastin and mussels. An ELP was modified to include catechol groups (mELP). The ELP and mELP were optimized for adhesive use in a soft tissue system. A warm and humid environment was used to study the adhesion of these proteins on pig skin. Iron and (hydroxymethyl) phosphine crosslinkers increased the adhesive strength of both proteins, and periodate increased the adhesive strength of mELP. The adhesive strengths of the proteins were maximized when mELP was mixed with iron or when either protein were mixed with (hydroxymethyl)phosphine crosslinkers. These maximized adhesives were 12-17 times stronger than a commercially available sealant. In addition,</div><div>the iron and mELP adhesive formulation achieved high adhesive strengths even when cured for only ten minutes. This adhesive formula shows promise for adhesive</div><div>applications on soft tissue.</div></div>
99

Immunoregulatory role of human islet amyloid polypeptide through FoxP3+CD4+CD25+ T regulatory cells. / 人類淀粉樣蛋白通過CD4+CD25+調節性T細胞的免疫調節作用 / CUHK electronic theses & dissertations collection / Ren lei dian fen yang dan bai tong guo CD4+CD25+ diao jie xing T xi bao de mian yi tiao jie zuo yong

January 2010 (has links)
Background. Islet amyloid polypeptide (IAPP, also known as amylin) is a 37-amino acid peptide principally co-secreted with insulin from the beta-cells of the pancreatic islets. Some of the physiological actions of human amylin (hIAPP) include glucose regulation, suppression of appetite and stimulation of renal sodium and water reabsorption. Amylin deficiency and diminished post-prandial amylin response have been reported in advanced stages of type 1 and type 2 diabetes. In autopsy specimens of type 2 diabetes, amyloid is found in 40--90% of cases. During the characterization of islet morphology of aged hIAPP transgenic mice, I observed pathological features suggestive of immune dysregulation. Review of literature also suggested possible immuno-modulating functions of human amylin in in vitro experiments. Since autoimmunity and innate immunity are implicated in aging and diabetes, I explored the immunological role of amylin with particular focus on CD4+CD25+ T regulatory cells and toll-like receptors (TLR) which are known mediators of autoimmunity and innate immunity respectively. / Conclusions. Human amylin may play an important role in modulating immunity mainly through stimulating CD4+CD25+ Treg cells, decreasing PLN and altering expression of TLR-4 and cytokines. If these findings are confirmed in in vivo model, human amylin has the potential to become a novel and promising therapy to prevent and reverse autoimmune disease such as autoimmune type 1 diabetes. / Hypothesis. Human amylin may have immunomodulating effects which may have implications on pathogenesis of autoimmune type 1 diabetes. / Materials and methods. Male hemizygous hIAPP transgenic mice (n=32) and their nontransgenic littermates (n=20) were fed with normal chow and studied longitudinally up to 18 months of age with measurement of plasma insulin, glucose and amylin at regular intervals. Detailed oral glucose tolerance test, intra-peritoneal insulin tolerance test, insulin and amylin protein expression were examined at 3, 7, 12 and 18 months of age. Histological changes of pancreas and spleen including changes in CD4+CD25+ T regulatory cells and cytokines were examined at 12 and 18 months. / Objectives. (1) I systemically characterized the morphological, functional and immune regulatory role of human amylin in aged hIAPP transgenic mice which include metabolic profiles, plasma levels of amylin and insulin as well as morphological changes of pancreatic lymph nodes (PLN). (2) I then examined splenic expression of TLR-4 associated changes in cytokines (TNF-alpha, TGF-beta, and IL-6). (3) I also examined the expression level of receptor activity modifying proteins (RAMPs) in pancreas and spleen. (4) I finished by investigating the role of human amylin on stimulating CD4+CD25+ T regulatory (Treg) cells in hIAPP transgenic mice and peripheral blood monocytes (PBMC) from healthy subjects. / Results. (1) With aging, the hIAPP transgenic mice demonstrated increased plasma amylin, decreased plasma insulin, reduced insulin to amylin ratio and improved insulin sensitivity (p&lt;0.05). (2) The aged hIAPP transgenic mice showed changes in immune function as indicated by: (a) Reduced number and size of PLN (p&lt;0.05). (b) Decreased expression level of TLR-4 in splenocytes (p&lt;0.05). (c) Increased expression of transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) protein but decreased level of IL-6 in splenocytes (p&lt;0.05). (3) The changes in the levels of immune cytokines such as IL-1, IL-2, IL-4, IL-10, IL-17, interferon-gamma and GM-CSF were similar between hIAPP transgenic and nontransgenic mice (p>0.05). (4) The levels of RAMP1, RAMP2, and RAMP3 were higher in the spleen of hIAPP transgenic mice than nontransgenic mice (p&lt;0.05). (5) The hIAPP transgenic mice showed higher percentage of CD4+CD25+ Treg cells compared with nontransgenic littermates. Treatment with human amylin, but not rat amylin, increased the percentage of FoxP3+CD4+CD25+ Treg cells in both splenic T lymphocytes of hIAPP transgenic mice and PBMCs of healthy subjects ex vivo (p&lt;0.05). / He, Lan / Adviser: Juliana C.N. Chan. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 176-199). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
100

Synthèse et caractérisation de nouveaux copolymères potentiellement autoassociatifs

CAILLOL, Sylvain 08 October 2002 (has links) (PDF)
Le sujet de cette étude consiste en la synthèse de nouveaux copolymères, associatifs en milieux aqueux, susceptibles d'encapsuler une protéine. Ces copolymères doivent être biocompatibles et biorésorbables pour une application biomédicale éventuelle et doivent de plus être amphiphiles. Le but de ce manuscrit est ainsi de décrire la synthèse de copolymères à blocs amphiphiles. L'association des blocs hydrophobes du copolymère doit en effet permettre la formation de particules en émulsion aqueuse. La partie hydrophobe des copolymères à blocs est constituée de polylactide synthétisé par polymérisation par ouverture de cycle du L-lactide. Le bloc hydrophile est constitué de poly(acide glutamique), peptide obtenu en deux étapes. On synthétise le poly(glutamate de benzyle) lors de la première étape par polymérisation par ouverture de cycle d'un anhydride de Leuchs, le N-carboxyanhydride de L-glutamate de benzyle. On déprotège ensuite les fonctions acide de ce polymère encore hydrophobe, le poly(glutamate de benzyle), pour obtenir le poly(acide glutamique), hydrophile. L'architecture du copolymère à blocs est obtenue à l'aide d'un amorceur difonctionnel qui amorce dans un premier temps la polymérisation du L-lactide. Le premier bloc de polylactide ainsi synthétisé possède en bout de chaîne un groupement susceptible d'amorcer la polymérisation du N-carboxyanhydride de L-glutamate de benzyle. On synthétise donc dans un deuxième temps le copolymère à blocs hydrophobes et on déprotège les fonctions acide du deuxième bloc pour obtenir le copolymère à blocs amphiphiles.

Page generated in 0.0697 seconds