• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • Tagged with
  • 25
  • 14
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The DNA binding interactions of Ru(II) polypyridyl complexes

Greguric, Antun, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2002 (has links)
This thesis reports on the synthesis, characterisation, enantiomeric resolution, 1H NMR structural study and physical evaluation of a series of certain bidentate ligand metal complexes, where ‘L-L’ denotes the ancillary bidentate ligand and ‘intercalator’ indicates the intercalating bidentate ligand. The L-L series varies in size and shape. Results of many tests and projects conducted are explained in detail. / Master of Science (Hons)
2

Controlling Excited State Electron Delocalization via Subtle Changes to Inorganic Molecular Structures

Kender, William Theodore January 2018 (has links)
No description available.
3

Establishing the Structure Function Relationship of Polypyridyl Ruthenium and Berenil-type Compounds in the Formation of Complexes with B-DNA and/or G-quadruplex DNA

Mikek, Clinton Gregory 08 December 2017 (has links)
Cancer results from the accumulation of genetic mutations in a normal cell that ultimately result in the expression (or overexpression) of oncogenes. The design of drugs having high affinity for specific DNA sequences or structural motifs is vital to gaining a better understanding of gene expression and to the development of new cancer treatments that are based on turning off oncogene expression. This dissertation presents studies of the binding of two ligand families, Berenil (DMZ), and ruthenium polypyridyl complexes (RPCs), to B-DNA and G-quadruplex (G4) DNA. The structureunction relationships for the interaction of these ligand families with DNA were probed by functional group substitution, truncation, or modification of the DMZ amidine groups, and by changing one of the RPC ruthenium ligands from phenanthroline to dipyridophenazine (dppz) or tetraazatetrapyrido-pentacene (tatpp), and lastly by adding a second Ru(Phen)2 core to the tatpp bridging ligand. Removal of one or both amidine groups from DMZ drastically reduces its binding to both B-DNA and G4-DNA. DMZ analogs in which one amidine was replaced by an alkyne group were synthesized with the expectation that the additional π-bonding character of the alkyne group would increase G4 affinity. All of the DMZ alkyne compounds were found to bind preferentially to G4-DNA (over B-DNA) and a few of these compounds demonstrated significant anticancer activity. RPCs with progressively longer ruthenium bound ligands were found to bind with differing affinities to B-DNA and G4-DNA. Monoruthenium RPCs exhibited a preference for binding to B-DNA, while binding the diruthenium RPC to G4-DNA was more complicated exhibiting both tighter and a weaker binding modes in comparison to the B-DNA complex. The diruthenium complex was found to bind more tightly to G4-DNA by approximately 3 kcal mol-1. The binding of small molecules to DNA resulting in the disruption of oncogene transcription represents a powerful approach to the treatment of cancer.
4

Ruthenium-Platinum Polypyridyl Complexes: Synthesis and Characterization

Williams, R. Lee 22 August 2001 (has links)
A series of bimetallic (Ru<sup>II</sup>, Pt<sup>II</sup) complexes were synthesized with the general formula [(tpy)RuCl(BL)PtCl₂](PF₆) (tpy = 2,2':6',2"-terpyridine and BL = bridging ligand) and their spectroscopic, electrochemical, and DNA binding properties studied. The bridging ligands used in these complexes were 2,3-bis(2'-pyridyl)pyrazine (dpp), 2,3-bis(2'-pyridyl)quinoxaline (dpq) and 2,3-bis(2'-pyridyl)benzoquinoxaline (dpb). These complexes combine light-absorbing Ru<sup>II</sup>-polypyridyl chromophores and a cis-PtCl₂ structural motif known to bind DNA. The Ru-bound chloride may be substituted, enabling further modification of the spectroscopic properties. The synthesis of [(tpy)RuCl(BL)PtCl₂](PF₆) utilizes a building block approach that allows modifications to the series of complexes within the general synthetic scheme. This illustrates the applicability of this scheme to the development of new series of complexes. The lowest-energy absorption for the three complexes is assigned to a Ru(dπ) → BL(π*) charge transfer transition. This transition shifts to lower energy as the ligand is varied from dpp to dpq to dpb. The first and second reductions are BL<sup>0/-</sup> and BL<sup>-/2-</sup> based and shift to more positive potentials from dpp to dpq to dpb. The Ru<sup>II/III</sup> redox couple remains at a nearly constant potential for the series. All three compounds show DNA binding when incubated with linearized plasmid DNA. Adduct formation was assessed by agarose gel electrophoresis as a retardation of band migration. / Master of Science
5

The Design, Syntheses, and Photophysics of Novel Pt(II) Polypyridyl Arylacetylides and Arylthiolates

Prusakova, Valentina 07 December 2012 (has links)
No description available.
6

Design, Synthesis and Physicochemical Analysis of Ruthenium(II) Polypyridyl Complexes for Application in Phototherapy and Nucleic Acid Sensing

Wachter, Erin Melissa 01 January 2016 (has links)
Current chemotherapeutics exhibit debilitating side effects as a result of their toxicity to healthy tissues. Reducing these side effects by developing chemotherapeutics with selectivity for cancer cells is an active area of research. Phototherapy is one promising modality for selective treatment, where drug molecules are “turned on” when irradiated with light, reducing damage to healthy tissues by spatially restricting the areas exposed to irradiation. A second approach to improve selectivity is to exploit the differences in cancerous versus healthy cells, such as increased metabolism and/or upregulation of cell surface receptors. Ruthenium(II) polypyridyl complexes are candidates for phototherapy due to their highly tunable photophysical and photochemical properties. The addition of strain to the metal center is a general approach used to render complexes susceptible to light-induced ligand loss. Upon ejection of a ligand, the Ru(II) center is capable of covalently binding biomolecules within cells to produce a cytotoxic effect. The ligands surrounding the metal center are amenable to chemical modification through the incorporation of pendent functional groups as chemical “handles”, allowing for different directing molecules to be attached. Nucleic acids are important targets for drug discovery, and the development of selective probes to either visualize or selectively damage nucleic acids within the cell is an ongoing area of research. Specifically, G-rich regions are abundant in the human genome, and the presence of G-quadruplexes in telomeres and promoter regions of oncogenes make them potential therapeutic targets. Ru(II) complexes are known to bind nucleic acids, and some have been shown to induce and/or stabilize G-quadruplex Structures. Multiple series of Ru(II) compounds have been synthesized and tested to improve the functional range for Ru(II) complexes for in vivo applications, where they act as “light switches” for DNA. These molecules are “off” when in an aqueous environment but turned “on” in the presence of DNA. Several hit compounds were identified that showed selectivity for specific G-quadruplex structures.
7

Oxygen-Sensitive Luminophores: A Survey of the Literature and Efforts toward a Novel Porphyrin-Pillared Zirconium Phosphonate

Wright, Joseph 01 January 2016 (has links)
Measurement and mapping of the pressure distribution across the surface of a suitably scaled model is an integral step in the design of any aircraft or automobile. For this purpose, the traditional workhorses of the aeronautic and automotive industries have been pressure taps--small orifices that contain electronic pressure transducers. Unfortunately, in addition to the limited spatial resolution achievable with such devices, their technical complexity and cost constitute serious disadvantages. For more than 35 years, researchers have pursued a fundamentally different alternative: indirect measurement of pressure via oxygen-induced quenching of the luminescence emitted by certain chemical species. Porphyrin complexes of dipositive palladium and especially platinum have emerged as one of the principal classes of oxygen-sensitive luminophores; ruthenium(II) polypyridyl complexes comprise another. Various other metals also form luminescent coordination complexes that are susceptible to quenching by O2, however, and these too have contributed to the diversity of luminophores that are now available for incorporation into pressure-sensitive paints and related films and coatings. After treating the photophysics of luminescence quenching by molecular oxygen and quantitative descriptions of this phenomenon in the ideal case and in heterogeneous media, the thesis presents a comprehensive survey of the chemical literature on oxygen-sensitive luminophores. Efforts to prepare and characterize a novel porphyrin-pillared mixed zirconium phosphonate are then detailed. Following complexation of Pt(II) ions by the porphyrin moieties, this material is expected to display oxygen-sensitive luminescence and should ameliorate such difficulties as luminophore aggregation and matrix photodegradation that are associated with many existing pressure-responsive coatings. Its preparation necessitated preliminary formation of a porphyrin functionalized with two phenylphosphonic acid groups, which was obtained by synthesizing dipyrromethane and diethyl 4-formylphenylphosphonate and condensing these two precursors. The mixed phosphonate, a layered material assembled from ZrOCl2 · 8H2O, methylphosphonic acid, and the aforementioned porphyrin, was then prepared in refluxing HF. Solid-state 31P NMR spectra and powder X-ray diffraction patterns were acquired for the final product, its estimated interlayer spacing of 22.8 Å figuring prominently in analysis and discussion of the X-ray data.
8

Synthesis,Structure and Properties of Ruthenium Polypyridyl Metalloligand Based Metal-Organic Frameworks

Polapally, Mamatha 01 July 2017 (has links)
Metal-organic frameworks (MOFs) have been extensively studied because of their amazing applications in gas storage, purification, photocatalysis, chemical sensing, and imaging techniques. Ruthenium polypyridyl complexes have been broadly considered as photosensitizers for the conversion of solar energy and photoelectronic materials. With this aspect, we have synthesized three new ruthenium polypyridyl based MOFs ([Ru(H2bpc)Cu(bpc)(Hbpc)2(H2O)]·5H2O (1), [Ru(H2bpc)(Fe(bpc)(Hbpc)2(H2O)2]·6H2O (2) and [Ru(H2bpc)Ni(bpc)(Hbpc)2(H2O)2]·6H2O (3)) from ruthenium(III) chloride, bpc (2,2’- bipyridine-4,4’-dicarboxylic acid) ligand, and 3d M(II) metal ions (M(II)= Cu(II), Fe(II), Ni(II)). These MOFs were synthesized under hydro or solvothermal conditions by using water, ethanol or methanol as solvents. The crystal structures of the new compounds contains zigzag chains of [Ru(bpc)3]n- complex ions linked by Cu, Fe or Ni complex ions individually. Above synthesized crystal structures were characterizing by single-crystal Xray and powder X-ray diffraction strategies, UV-vis and IR spectroscopy. Thermal properties were determining by thermogravimetric analysis. Magnetic properties were also studied.
9

STUDY OF THE MECHANISM OF ACTION FOR Ru(II) POLYPYRIDYL COMPLEXES AS POTENTIAL ANTICANCER AGENTS

Sun, Yang 01 January 2018 (has links)
Application of chemotherapeutic agents in current cancer treatment has been limited by adverse effects as poor selectivity results in systemic toxicity; most chemotherapy approaches also experience inherited or acquired drug resistance which lead to reduced treatment outcome. Research efforts have focused on the discovery of novel chemotherapies that overcome the limitations mentioned above. Ru(II) polypyridyl complexes with anti-cancer properties have been extensively studied as traditional cytotoxic agents and photodynamic therapy agents due to their photophysical and photochemical characteristics. Most research has focused on the design of Ru(II) polypyridyl complexes that have affinities to nucleic acids as inspired by the classic small molecule metal complex cisplatin. Though modifying the structures of ligands on the ruthenium metal center, the hydrophilicity, charge state and photochemical properties can be tuned, resulting to Ru(II) polypyridyl complexes that act through cellular targets other than DNA. Understanding the mechanism of action and identifying functional targets remain the challenging and complex research topic in the design and study of novel medication or candidates. With the development of semi-high throughput cytological profiling in a bacterial system, rapid investigation of the mechanism of action can be achieved to distinguish anti-cancer agents which possess different mechanisms of actions. Ru(II) polypyridyl complexes with different scaffolds have been studied and suggested to have anti-cancer properties through DNA damage response, and/or translational inhibition.
10

The Application of Ru(II) Polypyridyl Photoinduced Ligand Exchange from Drug Delivery to Photoactivation of Fluorescent Dyes

Rohrabaugh, Thomas Nelson, Jr. January 2018 (has links)
No description available.

Page generated in 0.0333 seconds