Spelling suggestions: "subject:"polysilicon"" "subject:"silicium""
1 |
Conception, réalisation et mise en oeuvre d'une plateforme d'instrumentation thermique pour des applications microfluidiquesMarty, Bertrand 17 November 2009 (has links) (PDF)
Conception, réalisation et mise en Suvre d'une plateforme d'instrumentation thermique pour des applications microfluidiques. Le concept de laboratoire sur puce ou lab-on-chip est basé sur le fait que l'on peut remplacer plusieurs appareils d'analyse nécessitant de l'entretien et des opérateurs par un système portable et autonome qui contient toutes les fonctions nécessaires afin de réaliser les opérations de laboratoire. Ce concept peut aussi bien s'appliquer à des taches pour l'industrie chimique, biologique ou encore médicale. Dans notre cas il s'agit de contrôler la température dans une canalisation microfluidique, et s'il y a besoin, de pouvoir influer sur cette température grâce à des actionneurs thermiques. La thèse a donc consisté à réaliser une plateforme d'instrumentation thermique pour ces applications. Nous avons développé un procédé de fabrication de capteurs thermiques simple et robuste : l'élément sensible de base est une diode PN de type zener, réalisée dans un film de polysilicium, qui présente la particularité d'être un composant dual (fonctionnement en capteur ou actionneur thermique selon la polarisation). La caractérisation électrique a permis de mettre en avant des sensibilités thermiques de.-22 mV/°C à -220 mV/°C pour les éléments les plus performants. La capacité de ces dispositifs à mesurer la température dans un environnement microfluidique a été démontrée. La dernière phase a concerné le développement d'une carte électronique dédiée permettant une mesure multiplexée de la température pour l'ensemble des capteurs (16 capteurs par plateforme) et le transfert des données sur PC pour effectuer le post traitement.
|
2 |
Développement et optimisation d'un procédé de gravure grille polysilicium pour les noeuds technologiques 45 et 32 nmBabaud, Laurene 30 April 2010 (has links) (PDF)
Dans la course à l'intégration, l'un des paramètres les plus critiques dans la fabrication des dispositifs et leur performance est la définition des grilles des transistors et en particulier le contrôle en dimension de ces grilles de transistors. Pour le nœud technologique 45nm, la variation totale de dimension devra être inférieure à 2.8nm sur une tranche de 300mm. Cela comprend la variation intrapuce, intraplaque, plaque à plaque et lot à lot. Cette thèse porte sur l'étude des interactions plasma/matériaux lors d'un procédé industriel de gravure d'une grille polysilicium pour le nœud technologique 45nm. L'analyse dimensionnelle des motifs et la caractérisation chimique des surfaces exposées aux plasmas ont permis de caractériser et d'optimiser ce procédé de gravure. L'analyse des différents contributeurs de variabilité de la dimension critique des grilles, conjuguée à la compréhension approfondie des mécanismes de gravure par plasma, a permis de mettre en place des actions correctives afin de minimiser ces sources de variations. La gravure du polysilicium est contrôlée par la formation d'une couche fluorocarbonnée se formant en surface des flancs du polysilicium. La maitrise de cette couche passivante par les conditions du plasma (pression, puissance source débit de gaz...) a permis de développer une boucle de régulation innovante afin d'optimiser le contrôle de la dispersion des CD d'un lot à un autre. La mise en place de ce genre de boucle faisant varier plusieurs paramètres de la gravure par plasma sera la clef pour le contrôle dimensionnel des futurs nœuds technologiques en microélectronique.
|
3 |
Solution générique pour l'adressage matriciel de micro-actionneurs thermiques et optimisation de micro-sources thermiquesDumonteuil, Maxime 24 February 2006 (has links) (PDF)
La technologie a aujourd'hui atteint une maturité suffisante pour garantir la réalisation de MEMS avec un rendement de fabrication proche de 100%. Dés lors, on peut sereinement envisager l'intégration à haute densité de micro actionneurs ou de détecteurs pour de nouvelles fonctionnalités. Le travail présenté porte sur la mise en place de systèmes d'adressage matriciel pour des actionneurs thermiques, ainsi que sur la réalisation de source de chaleur à profil de température ajustable, voire configurable. Dans un premier temps, nous effectuerons un tour d'horizon des applications utilisant des micro sources de chaleur. Ceci afin de spécifier les caractéristiques propres à chaque type d'application. Une solution générique au problème d'adressage de source de chaleur sera alors proposée, basée sur des éléments à seuils symétriques en polysilicium. La mise au point de cette solution, impliquant un contrôle du dopage du polysilicium par implantation, sera détaillée. Ensuite nous présenterons les deux projets ayant permis de valider l'utilisation de ce système d'adressage : le projet MicroPyros visant à la réalisation d'une matrice de micro actionneurs pyrotechniques, ainsi qu'un projet visant la réalisation d'une matrice de micro éjecteurs. Pour chacun des deux cas, des études ont été menées, conduisant à des réalisations au sein de la centrale technologique du LAAS CNRS. Les différentes matrices réalisées ont ensuite été testées et validées. Enfin, nous présenterons les résultats du dernier run technologique, visant à permettre la comparaison des réalisations suspendues, sur membranes et sur silicium, ainsi qu'à explorer de nouvelles fonctionnalités basées sur les éléments à seuils symétriques en polysilicium.
|
4 |
Etude de NEMS à nanofils polycristallins pour la détection et l’intégration hétérogène 3D ultra-dense / Study of polycrystalline nanowire based NEMS for detection and ultra-dense 3D heterogeneous integrationOuerghi, Issam 04 December 2015 (has links)
Les progrès technologiques de ces dernières années ont permis une très forte intégration des composants de la microélectronique à l'échelle nanométrique. Face aux limites de la miniaturisation classique, les technologies d'intégration en trois dimensions (3D) ouvrent la voie vers des dispositifs miniaturisés hétérogènes avec de nouvelles générations de puces. En parallèle, de nouveaux concepts tels que les nanofils sans jonction et les nanofils en silicium polycristallins permettent à terme d'imaginer des procédés froids et des dispositifs à faible coût permettant une intégration 3D hyperdense sur un CMOS stabilisé. La fabrication de NEMS à base de nanofils polycristallins pour la détection de masse sur CMOS est donc une nouvelle opportunité « More-Than-Moore ». Les capteurs pourraient être disposés en réseau dense en s'inspirant des architectures mémoires et imageurs. L'adressage individuel de chaque NEMS, la possibilité de les fonctionnaliser à la détection de molécules particulières, et la multiplication des capteurs sur une grande surface (« Very Large Integration » (VLSI)) permettraient la mise en œuvre d'un nouveau genre de capteur multi-physique, compact et ultrasensible. Le but de ces travaux de thèse a donc été la fabrication et l'évaluation des performances de NEMS à base de nanofils en poly-silicium. L'enjeu fut de trouver des procédés avec un budget thermique compatible à une intégration sur back-end. Une étude rigoureuse sur les propriétés physico-chimiques de la couche a été corrélée aux performances électriques, mécaniques, ainsi qu'au rendement des NEMS poly-Silicium, ce qui nous a permis de faire une sélection des meilleurs procédés de fabrication. Les NEMS fabriqués à basse température avec une couche active déposée à température ambiante et recristallisée par laser ont montré des performances, que ce soit au niveau de la transduction (piézorésistivité), ou de la stabilité du résonateur compétitives par rapports aux références monocristallines. / Recently, technological advances lead to a very large scale integration (VLSI) of microelectronics components at the nanoscale. Faced with the traditional miniaturization limits, the three dimensions (3D) integration open the door to heterogeneous miniaturized devices, with new chip generations. At the same time, new concepts such as junctionless nanowires and polycrystalline silicon nanowires allow to imagine low temperature processes and low-cost devices for a 3D integration on a stabilized CMOS. Poly-silicon nanowire based NEMS on CMOS for mass detection is a new "More-Than-Moore" opportunity. The NEMS could be arranged in a dense network like memory and image sensor architectures. The individual addressing of each NEMS, the functionalization for the detection of specific molecules within a large area (VLSI), allow the implementation of a new type of Multi-physics sensors, compact and highly sensitive. The purpose of this thesis has been the manufacturing and the performance evaluation of poly-silicon nanowire based NEMS. The challenge was to find the best processes with a back-end compatible thermal budget. A rigorous study of the layer physicochemical properties has been correlated with the electrical, mechanical performances and the yield of poly-silicon NEMS. This allowed us to make a selection of the best fabrication processes. NEMS manufactured at very low temperature with an active layer deposited at room temperature and recrystallized by a laser annealing exhibited high performances in terms of transduction (piezoresistivity) and frequency stability comparable to monocrystalline references. Polycrystalline silicon.
|
Page generated in 0.0372 seconds