• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 17
  • 15
  • 11
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization and Physicochemical Modifications of Polymer Hollow Fiber Membranes for Biomedical and Bioprocessing Applications

Madsen, Benjamin R. 01 May 2010 (has links)
Hollow fiber membranes (HFMs) formed through phase inversion methods exhibit specific physicochemical characteristics and generally favorable surface and mechanical properties, supporting their use in diverse applications including ultrafiltration, dialysis, cell culture, bioreactors, and tissue engineering. Characterization of, and modifications to, such membranes are important steps in achieving desired characteristics for specific applications. HFMs subject to gas, irradiation, and chemical sterilization techniques were characterized based on several analytical techniques. It was revealed that these common sterilization techniques can cause inadvertent changes to HFM properties. While these changes may cause detrimental effects to HFMs used in filtration, the methods of sterilization are also presented as a facile means of tuning properties toward specific applications. Modifications to HFM surface chemistries were also sought as a method of adsorbing bacterial lipopolysaccharide (LPS) from solutions used in hemodialysis treatments and bioprocessing applications. It was found that additives such as polyvinylpyrrolidone (PVP), polyethyleneglycol (PEG), and poly-L-lysine (PLL) can facilitate adsorption capacities of HFMs toward LPS. Additionally, chemical changes are presented as a means of preferentially adsorbing LPS to specific locations on the HFM surface.
22

High Permeability/High Diffusivity Mixed Matrix Membranes For Gas Separations

Kim, Sangil 07 May 2007 (has links)
The vast majority of commercial gas separation membrane systems are polymeric because of processing feasibility and cost. However, polymeric membranes designed for gas separations have been known to have a trade-off between permeability and selectivity as shown in Robeson's upper bound curves. The search for membrane materials that transcend Robeson's upper bound has been the critical issue in research focused on membranes for gas separation in the past decade. To that end, many researchers have explored the idea of mixed matrix membranes (MMMs). These membranes combine a polymer matrix with inorganic molecular sieves such as zeolites. The ideal filler material in MMMs should have excellent properties as a gas adsorbent or a molecular sieve, good dispersion properties in the polymer matrix of submicron thickness, and should form high quality interfaces with the polymer matrix. In order to increase gas permeance and selectivity of polymeric membranes by fabricating MMMs, we have fabricated mixed matrix membranes using carbon nanotubes (CNTs) and nano-sized mesoporous silica. Mixed matrix membranes containing randomly oriented CNTs showed that addition of nanotubes to a polymer matrix could improve its selectivity properties as well as permeability by increasing diffusivity. Overall increases in permeance and diffusivity for all tested gases suggested that carbon nanotubes can provide high diffusivity tunnels in the CNT within the polymer matrix. This result agreed well with molecular simulation estimations. In order to prepare ordered CNTs membranes, we have developed a simple, fast, commercially attractive, and scalable orientation method. The oriented CNT membrane sample showed higher permeability by one order of magnitude than the value predicted by a Knudsen model. This CNT membrane showed higher selectivities for CO₂ over other gas molecules because of preferential interaction of CO₂ with the amine functionalized nanotubes, demonstrating practical applications in gas separations. Recently, mesoporous molecular sieves have been used in MMMs to enhance permeability or selectivity. However, due to their micrometer scale in particle size, the composite membrane was extremely brittle and tended to crack at higher silica loading. In this study, we have developed fabrication techniques to prepare MMMs containing mesoporous MCM-41 nanoparticles on the order of ~50 nm in size. This smaller nanoparticle lead to higher polymer/particle interfacial area and provides opportunity to synthesize higher loading of molecular sieves in polymer matrix up to ~80 vol%. At 80 vol% of nano-sized MCM-41 silica loading, the permeability of the membrane increased dramatically by 300 %. Despite these increases in permeability, the separation factor of the MMMs changed only slightly. Therefore, these nanoscale molecular sieves are more suitable for commercialization of MMMs with very thin selective layers than are micro-sized zeolites or molecular sieves. / Ph. D.
23

High Performance Engineering Polymers: Design, Properties, and Performance

Dennis, Joseph M. 18 April 2017 (has links)
The facile synthesis of engineering thermoplastics enabled the development of structure-morphology-property relationships for a wide range of applications. Utilizing step-growth polymerization techniques, a myriad of reaction conditions probed various polymer families including polysulfones, polyesters, polyimides and polyureas. Copolymers ranging from random to segmented sequences provided insight into the influence of segment length on physical properties. Melting temperatures, glass transition temperatures, and mechanical properties responded systematically to segment length and morphology. Leveraging several complementary analytical techniques identified critical segment lengths required for phase separation and crystallization within these copolymers. Introduction of hydrogen bonding further complicated the interrelationships between thermal and mechanical properties, and possible co-crystallization between dissimilar segments occurred. Finally, branching out from linear copolymers to other topologies determined the influence of branch length on rheological and mechanical properties. The commercially-viable synthesis of these various thermoplastics further highlights the immediate impact on state-of-the-art materials, and the fundamental development described herein provides a road map for future development in this field. / Ph. D.
24

Membranes ionomères renforcées par des nanofibres obtenues par électrofilage pour piles à combustible et l'électrolyseur / Ionomer membranes reinforced with electrospun nanofibres for fuel cell and electrolysis applications

Giancola, Stefano 16 December 2016 (has links)
La production de membranes échangeuses de protons (PEM) robustes et présentant une conductivité élevée est essentielle pour le développement à grande échelle de dispositifs de stockage et de conversion de l’énergie tels que les piles à combustible (PEMFC) et les électrolyseurs (PEMWE). Ces travaux de thèse portent sur la préparation et la caractérisation de membranes composites préparées à partir d’acide perfluorosulfonique, à chaine latérale courte (SSC-PFSA), de type Aquivion®, et de fibres de polymères obtenues par filage électrostatique. Cette dernière technique permet de préparer des matériaux fibreux à porosité élevée, caractérisés par la présence de fibres de diamètres sub-micrométriques, et pouvant être utilisés comme renfort mécanique des membranes ionomères. Le polysulfone a été retenu comme constituant des fibres étant donné ses stabilités mécanique et chimique élevées d’une part et pour la possibilité de modifier ses propriétés physico-chimiques par fonctionnalisation, d’autre part. Ces membranes comportant une distribution homogène des nanofibres dans toute leur épaisseur ont été préparées à partir d’un procédé d’imprégnation Des membranes renforcées, Aquivion®-PSU, basées sur un PFSA dont le poids équivalent (EW) varie entre 700 et 870 g.mol-1 et dont la concentration massique de fibres varie entre 5 et 18 %, ont été préparées. Les membranes renforcées sont caractérisées par des faibles gonflements volumique et surfacique et par une rigidité plus élevée en comparaison des membranes non renforcées de même EW. La perméabilité a l’hydrogène a engluement été réduite. Les améliorations en terme de propriétés mécaniques et dimensionnelles n’ont pas amené à une diminution significatif de la conductivité protonique, qui été maintenue aux mêmes valeurs des membranes non renforcée. Les assemblage membrane-électrode (AME) préparés à partir de ces membranes composites ont montré des caractéristiques i/V intéressantes et prometteuses (1.76 V à 2 A/cm²).Des Polysulfones fonctionnalisés avec le 1,2,3 triazole portant des groupements alkyle ou aryle ont été préparés par une voie de synthèse rapide et a haute rendement assistée par micro-ondes. Les nanofibres electrofilées de PSU fonctionnalisé avec le 4-ethyl-1,2,3-triazole (PSUT), avec un degré de fonctionnalisation en espèce triazole de 0.3 et 0.9 par unité répétitive de PSUT ont été intégrées à une matrice Aquivion®. L’objectif de ces travaux est d’améliorer la stabilité mécanique des membranes composites à partir des interactions acido-basiques PFSA-PSUT (réticulation ionique). Les membranes Aquivion®-PSUT sont caractérisées par une rigidité, une dureté et une ductilité plus élevées en comparaison des membranes Aquivion® renforcées par les fibres de PSU non fonctionnalisées. Une diminution du gonflement volumique et surfacique a également été observée sans perte de la conductivité jusqu’à une concentration massique de fibres de 12 %. Les AME préparés à partir de membranes renforcées Aquivion®-PSUT (12%) sont caractérisés par les mêmes propriétés courant/tension, en monocellule de pile à combustible fonctionnant à 80 °C et 100 % d’humidité relative, que ceux préparés à partir d’Aquivion®. / The preparation of highly proton conducting and durable proton exchange membranes (PEM) for low temperature fuel cells (PEMFC) and electrolysers (PEMWE) is crucial for the large scale application of these energy conversion/storage devices. This PhD thesis focuses on the preparation and characterisation of composite membranes based on highly conducting Aquivion® short side chain perfluorosulfonic acid (PFSA) and polymer fibres obtained by electrospinning. This technique allows the preparation of highly porous mats of fibres with sub-micrometric diameters that can act as an efficient mechanical reinforcement for ionomer membranes. The chosen polymer is the mechanically robust and chemically stable polysulfone (PSU), which can also been functionalised to modify its physico-chemical properties. Reinforced PEM with fibres homogeneously dispersed through the entire membrane cross-section have been realised by a fast and efficient impregnation process.Aquivion®-PSU reinforced membranes based on PFSA with equivalent weight (EW) ranging from 700 to 870 g mol-1 and fibre loading ranging from 5 to 18 wt% have been prepared. They showed reduced volume and area swelling and higher stiffness with respect to non-reinforced membranes with the same EW. The hydrogen crossover was also reduced. The improvement in mechanical and dimensional properties was not detrimental for the in-plane proton conductivity that was kept at the same value of non-reinforced membranes. Membrane-electrode assemblies (MEA) based on these composite PEM show promising i/V characteristics in PEMWE (1.76 V at 2 A cm-2).Polysulfones functionalised with 1,2,3-triazole bearing alkyl and aryl ring substituents have been synthesized by a fast and high-yield chemical route involving the azide-alkyne cycloaddition reaction assisted by microwaves as last step. Electrospun nanofibers of polysulfone functionalised with 4-epthyl-1,2,3-triazole (PSUT) with a degree of functionalisation of 0.3 and 0.9 triazole moiety per PSUT repeat unit have been embedded into the Aquivion® matrix. The aim of this study was to further improve the mechanical properties of the membrane by PFSA-PSUT acid-base interactions (ionic crosslinking). Aquivion®-PSUT membranes showed enhanced mechanical stiffness, toughness and ductility with respect to Aquivion® membranes reinforced with the non-functionalised polymer with the same EW and fibre loading. Reduced volume and area swelling have also been observed with no drop of proton conductivity until a fibre loading of (12 wt%). MEA based on Aquivion®-PSUT reinforced membrane with 12 wt% fibre loading showed identical fuel cell polarisation curve with respect to a MEA based on Aquivion® at 80 °C and 100 % of relative humidity (RH).
25

Síntese e caracterização de membranas de filme fino composto de polissulfona/quitosana reticulada com glutaraldeído. / Synthesis and characterization of thin film composite membranes of polysulfone/chitosan crosslinked with glutaraldehyde.

Nogueira, Fabiana Tavares 18 May 2012 (has links)
Um grande obstáculo a ser vencido para que se tenha uma maior utilização da tecnologia de membranas na purificação de líquidos é o fenômeno do fouling. Como consequência, o desenvolvimento de membranas menos propensas ao fouling é hoje objeto de inúmeras pesquisas. Dentre os processos estudados, tem-se o desenvolvimento de membranas de filme fino composto, que possui como vantagem a possibilidade de se melhorar cada camada de maneira independente, de forma a se aperfeiçoar o desempenho da membrana como um todo. O projeto de pesquisa foi desenvolvido no laboratório do Centro Internacional de Referência em Reúso de Água (CIRRA/IRCWR), uma entidade sem fins lucrativos, vinculado ao Departamento de Engenharia Hidráulica e Ambiental da Escola Politécnica da Universidade de São Paulo (USP). Este teve como objetivo a síntese e a caracterização de membranas de filme fino composto de polissulfona e quitosana reticulada com glutaraldeído. Embora o objetivo principal desse trabalho tenha sido o desenvolvimento de membranas menos propensa ao fouling, a susceptibilidade ao fouling das membranas produzidas foi avaliada de maneira indireta, através da avaliação de propriedades como hidrofilicidade e rugosidade da superfície. Membranas de ultrafiltração a base de polissulfona (PSF) foram produzidas, através do método de separação de fases via imersão-precipitação, para serem usadas como suporte poroso para a camada de quitosana. Nessa etapa, a influência da concentração de PSF na solução polimérica; da temperatura de síntese; da umidade relativa do ar; e do suporte (não-tecido) nas características da membrana foram estudadas. O efeito da aplicação de uma camada de álcool polivinílico, reticulada com glutaraldeído, entre as camadas de PSF e quitosana, como forma de melhorar a estabilidade estrutural da membrana, foi avaliado. Adicionalmente, analisou-se a influência da introdução do glutaraldeído como agente reticulante na solução de quitosana na seletividade; na taxa de permeação; na estabilidade química; e na toxicidade da membrana. Os resultados obtidos mostraram que o aumento da concentração de PSF na solução polimérica, a diminuição da temperatura de síntese e o aumento da umidade do ar levaram à formação de membranas menos porosas. Os suportes de poliéster avaliados, CU414 e CU424 (Crane Nonwovens), embora apresentem características adequadas à produção de membranas, não se mostraram adequados para a síntese de membranas de PSF nas condições avaliadas devido a sua alta porosidade. A solução de reticulação da camada de álcool polivinílico (PVA), composta de glutaraldeído em solução aquosa de acetona, atacou quimicamente o suporte de poliéster e a membrana de polissulfona, inviabilizando a aplicação da camada de PVA entre as camadas de PSF e quitosana. A introdução do glutaraldeído tornou a camada de quitosana menos rugosa e mais hidrofílica. Adicionalmente, o aumento da concentração de glutaraldeído na solução de quitosana levou a um decréscimo na permeabilidade da membrana, o qual foi atribuído à compactação da estrutura da membrana. A reticulação da quitosana com glutaraldeído não levou a uma melhora significativa da capacidade de separação das membranas. A rejeição de ions bivalentes (Mg2+ e SO4 2-) e monovalentes (Na+ e Cl-) não ultrapassou 25% e 12%, respectivamente. Análises de microscopia de eletrônica de varredura realizadas com as membranas reticuladas com glutaraldeído, antes e após sua imersão em solução de HCl, indicaram que a superfície das membranas reticuladas com 3% de glutaraldeído aparentemente não foi afetada pelo ácido, ao contrário das membranas reticuladas com 1% e 5% de glutaraldeído, que apresentaram aumento no tamanho de seus poros. Não foi observada toxicidade aguda e/ou crônica, em relação aos organismos teste Daphinia similis e Ceriodaphinia dubia, respectivamente, em amostras de água que permaneceram em contato com as membranas reticuladas com glutaraldeído. / A major obstacle to be overcome in order to have a greater use of membrane technology in liquids purification is the phenomenon of fouling. As a consequence, the development of membranes less prone to fouling is now the objective of numerous studies. Among the processes evaluated, the development of thin film composite membranes has been the focus of many researches since it is possible to improve each layer independently, in order to improve the membrane performance as a whole. This work aimed to study the synthesis and characterization of thin film composite chitosan, crosslinked with glutaraldehyde, and polysulfone (PSF) membranes. PSF ultrafiltration membranes were produced by phase inversion via immersion precipitation to be used as porous support for the chitosan layer. The influence of PSF concentration in the polymeric solution; temperature of synthesis; air humidity, and membrane nonwoven support, CU414 and CU424 (Crane Nonwovens), on the membrane characteristics and performance were studied. The effect polyvinyl alcohol (PVA), crosslinked with glutaraldehyde, between PSF and chitosan layers, on the cast membrane structural stability was investigated. The influence of glutaraldehyde as a chitosan crosslinking agent on membrane selectivity, permeability, chemical stability, and toxicity was also evaluated. The results showed that increasing PSF concentration, decreasing temperature and increasing air humidity resulted in less porous membranes. The support media used were not suitable for the production of PSF membranes under the conditions used in this work due to its high porosity. The solution used to crosslink the PVA layer, composed of glutaraldehyde in aqueous solution of acetone, attacked the support media and the PSF membrane, preventing the application of the PVA layer between the PSF and chitosan layers. The use of glutaraldehyde as a chitosan crosslinking agent made the membrane less rough and more hydrophilic. Additionally, increasing glutaraldehyde concentration in the chitosan solution led to a decrease in membrane permeability, which was attributed to a compaction of the membrane structure, leading to a decreased mobility of polymer chains and a decrease in the membrane void volume. Membranes separation capacity was evaluated using two different ionic solutions, magnesium sulphate (MgSO4 1,000 mg/L), and sodium chloride (NaCl 2,000 mg/L). Rejection of bivalent and monovalent ions did not exceed 25% and 12%, respectively. Scanning electron microscopy images showed that the membrane surface crosslinked with 3% glutaraldehyde apparently was not affected by immersion into HCl solution. However, the membranes crosslinked with 1% and 5% glutaraldehyde showed an increase in pore size after immersion, compared to the untreated membrane, suggesting an increased susceptibility to acid attack of the membrane. The potential for glutaraldehyde membrane releasing was evaluated through acute and chronic toxicity assays using Daphnia similis and Ceriodaphnia dubia, respectively. None of tested membranes induced acute or chronic toxicity to the water at which they remained in contact, under tested conditions.
26

Síntese e caracterização de membranas de filme fino composto de polissulfona/quitosana reticulada com glutaraldeído. / Synthesis and characterization of thin film composite membranes of polysulfone/chitosan crosslinked with glutaraldehyde.

Fabiana Tavares Nogueira 18 May 2012 (has links)
Um grande obstáculo a ser vencido para que se tenha uma maior utilização da tecnologia de membranas na purificação de líquidos é o fenômeno do fouling. Como consequência, o desenvolvimento de membranas menos propensas ao fouling é hoje objeto de inúmeras pesquisas. Dentre os processos estudados, tem-se o desenvolvimento de membranas de filme fino composto, que possui como vantagem a possibilidade de se melhorar cada camada de maneira independente, de forma a se aperfeiçoar o desempenho da membrana como um todo. O projeto de pesquisa foi desenvolvido no laboratório do Centro Internacional de Referência em Reúso de Água (CIRRA/IRCWR), uma entidade sem fins lucrativos, vinculado ao Departamento de Engenharia Hidráulica e Ambiental da Escola Politécnica da Universidade de São Paulo (USP). Este teve como objetivo a síntese e a caracterização de membranas de filme fino composto de polissulfona e quitosana reticulada com glutaraldeído. Embora o objetivo principal desse trabalho tenha sido o desenvolvimento de membranas menos propensa ao fouling, a susceptibilidade ao fouling das membranas produzidas foi avaliada de maneira indireta, através da avaliação de propriedades como hidrofilicidade e rugosidade da superfície. Membranas de ultrafiltração a base de polissulfona (PSF) foram produzidas, através do método de separação de fases via imersão-precipitação, para serem usadas como suporte poroso para a camada de quitosana. Nessa etapa, a influência da concentração de PSF na solução polimérica; da temperatura de síntese; da umidade relativa do ar; e do suporte (não-tecido) nas características da membrana foram estudadas. O efeito da aplicação de uma camada de álcool polivinílico, reticulada com glutaraldeído, entre as camadas de PSF e quitosana, como forma de melhorar a estabilidade estrutural da membrana, foi avaliado. Adicionalmente, analisou-se a influência da introdução do glutaraldeído como agente reticulante na solução de quitosana na seletividade; na taxa de permeação; na estabilidade química; e na toxicidade da membrana. Os resultados obtidos mostraram que o aumento da concentração de PSF na solução polimérica, a diminuição da temperatura de síntese e o aumento da umidade do ar levaram à formação de membranas menos porosas. Os suportes de poliéster avaliados, CU414 e CU424 (Crane Nonwovens), embora apresentem características adequadas à produção de membranas, não se mostraram adequados para a síntese de membranas de PSF nas condições avaliadas devido a sua alta porosidade. A solução de reticulação da camada de álcool polivinílico (PVA), composta de glutaraldeído em solução aquosa de acetona, atacou quimicamente o suporte de poliéster e a membrana de polissulfona, inviabilizando a aplicação da camada de PVA entre as camadas de PSF e quitosana. A introdução do glutaraldeído tornou a camada de quitosana menos rugosa e mais hidrofílica. Adicionalmente, o aumento da concentração de glutaraldeído na solução de quitosana levou a um decréscimo na permeabilidade da membrana, o qual foi atribuído à compactação da estrutura da membrana. A reticulação da quitosana com glutaraldeído não levou a uma melhora significativa da capacidade de separação das membranas. A rejeição de ions bivalentes (Mg2+ e SO4 2-) e monovalentes (Na+ e Cl-) não ultrapassou 25% e 12%, respectivamente. Análises de microscopia de eletrônica de varredura realizadas com as membranas reticuladas com glutaraldeído, antes e após sua imersão em solução de HCl, indicaram que a superfície das membranas reticuladas com 3% de glutaraldeído aparentemente não foi afetada pelo ácido, ao contrário das membranas reticuladas com 1% e 5% de glutaraldeído, que apresentaram aumento no tamanho de seus poros. Não foi observada toxicidade aguda e/ou crônica, em relação aos organismos teste Daphinia similis e Ceriodaphinia dubia, respectivamente, em amostras de água que permaneceram em contato com as membranas reticuladas com glutaraldeído. / A major obstacle to be overcome in order to have a greater use of membrane technology in liquids purification is the phenomenon of fouling. As a consequence, the development of membranes less prone to fouling is now the objective of numerous studies. Among the processes evaluated, the development of thin film composite membranes has been the focus of many researches since it is possible to improve each layer independently, in order to improve the membrane performance as a whole. This work aimed to study the synthesis and characterization of thin film composite chitosan, crosslinked with glutaraldehyde, and polysulfone (PSF) membranes. PSF ultrafiltration membranes were produced by phase inversion via immersion precipitation to be used as porous support for the chitosan layer. The influence of PSF concentration in the polymeric solution; temperature of synthesis; air humidity, and membrane nonwoven support, CU414 and CU424 (Crane Nonwovens), on the membrane characteristics and performance were studied. The effect polyvinyl alcohol (PVA), crosslinked with glutaraldehyde, between PSF and chitosan layers, on the cast membrane structural stability was investigated. The influence of glutaraldehyde as a chitosan crosslinking agent on membrane selectivity, permeability, chemical stability, and toxicity was also evaluated. The results showed that increasing PSF concentration, decreasing temperature and increasing air humidity resulted in less porous membranes. The support media used were not suitable for the production of PSF membranes under the conditions used in this work due to its high porosity. The solution used to crosslink the PVA layer, composed of glutaraldehyde in aqueous solution of acetone, attacked the support media and the PSF membrane, preventing the application of the PVA layer between the PSF and chitosan layers. The use of glutaraldehyde as a chitosan crosslinking agent made the membrane less rough and more hydrophilic. Additionally, increasing glutaraldehyde concentration in the chitosan solution led to a decrease in membrane permeability, which was attributed to a compaction of the membrane structure, leading to a decreased mobility of polymer chains and a decrease in the membrane void volume. Membranes separation capacity was evaluated using two different ionic solutions, magnesium sulphate (MgSO4 1,000 mg/L), and sodium chloride (NaCl 2,000 mg/L). Rejection of bivalent and monovalent ions did not exceed 25% and 12%, respectively. Scanning electron microscopy images showed that the membrane surface crosslinked with 3% glutaraldehyde apparently was not affected by immersion into HCl solution. However, the membranes crosslinked with 1% and 5% glutaraldehyde showed an increase in pore size after immersion, compared to the untreated membrane, suggesting an increased susceptibility to acid attack of the membrane. The potential for glutaraldehyde membrane releasing was evaluated through acute and chronic toxicity assays using Daphnia similis and Ceriodaphnia dubia, respectively. None of tested membranes induced acute or chronic toxicity to the water at which they remained in contact, under tested conditions.
27

Porous Membrane

Rane, Mahendra 01 April 2010 (has links) (PDF)
Membrane processes can cover a wide range of separation problems [with a specific membrane (membrane structure) required for every problem]. Thus, there are membranes available that differ in their structure and consequently in the functionality. Therefore membrane characterization is necessary to ascertain, which membrane may be used for a certain separation. Membranes of pore size ranging from 100nm to 1μm with a uniform pore size are very important in membrane technology. An optimum performance is achieved when the membrane is as thin as possible having a uniform pore size. Here in this thesis, membranes were synthesized by particle assisted wetting using mono-layers of silica colloids as templates for pores along with polymerizable organic liquids on water surface. The pore size reflects the original shape of the particles. Thus it is possible to tune the pore size by varying the particle size. This method is effective to control pore sizes of membranes by choosing silica particles of suitable size. This approach gives a porous structure that is very thin, but unfortunately limited in mechanical stability. Thus there is a need for support which is robust and can withstand the various mechanical stresses. A small change in the membrane or defect in the layered structure during the membrane formation can have drastic effect on the assembly. Lateral homogeneity of the layer generated by the particle assisted wetting can be judged by examination of its reflectivity, but once it is transferred on any solid support this option is no more. So a method is needed to detect the cracks or the inhomogenity of the membrane which can be detected even after the transfer. To tackle this problem a very simple and novel technique for characterizing the membrane by fluorescence labeling and optical inspection was developed in this thesis. The idea was to add a fluorescent dye which is poorly water soluble to the spreading solution comprising of the particles and the monomer. If the dye survived the photo-cross linking, then it would be embedded in the cross-linked polymer and would serve as a marker. Defects and inhomogenity would show up as cracks and spots. By the method that we have developed, we can detect our membrane from the support and spot defects.
28

Incorporating primary human renal proximal tubule cells into a hollow fibre bioreactor in the development of an in vitro model for pharmaceutical research

Ginai, Maaria January 2015 (has links)
Current in vitro cellular methods utilised in drug metabolism and pharmacokinetic (DMPK) studies during drug development do not provide the 3D structure and functions of organs found in vivo, such that resulting in vitro-in vivo extrapolation (IVIVE) may not always accurately reflect clinical outcome. This highlights the need for the development of new dynamic in vitro cell models to aid improvement of IVIVE. The aim of this project was to incorporate characterised primary renal cells within a hollow fibre bioreactor for use in DMPK studies investigating renal clearance. Fluorescence based assays were developed to assess the functionality of three drug transporters involved in the renal transport of pharmaceutical compounds: P-gp, BCRP and OCT2. The developed assays were then applied alongside transporter visualisation and genetic expression assays to characterise primary human proximal tubule cells over a series of population doublings. Cells at a population doubling of 5 demonstrated the best transporter activity whilst allowing cells to be expanded in vitro. Polysulfone (PSF) based membranes, which are widely used in dialysis components were developed by blending additives to improve renal cell attachment and culture. The membranes exhibited a characteristic porous internal structure with smooth skin layers on the surface, and were able to be sterilised via autoclaving due to their high thermal stability. PSF blended with polyvinylpyrrolidone (PVP) was the most hydrophilic with cell metabolic activity similar to standard tissue culture plastic. The production of hollow fibres of varying thicknesses and properties from the PSF and PVP blend yielded a marked difference in renal cell attachment and long term viability. Fibres incorporated into glass casings to produce the single hollow fibre bioreactors (HFBs) were able to be sterilised by autoclaving whilst remaining intact. Due to the variation of fibre integrity within the batch, many fibres exhibited tears within the HFBs. This ultimately led to cell depletion within the fibre over the culture period; however, intact fibres demonstrated an increase in cell growth towards the end of the culture period under flow conditions. These results demonstrate the progress made towards a small scale in vitro renal model incorporating characterised primary renal cells to aid the improvement of IVIVE in DMPK research.
29

Synthesis and Characterization of trans-1,4-Cyclohexylene Ring Containing Poly(arylene ether sulfone)s

Zhang, Bin 29 March 2012 (has links)
Poly(arylene ether sulfone)s (PAES) are important commercial polymers and have been extensively studied due to their excellent thermal and mechanical properties. However, some applications are still limited when good solvent resistance and low thermal expansion coefficient are required. There has been a continuous interest in developing new PAES based on new monomers or polymer modifications to obtain new properties or to enhance existing properties. In this dissertation, the synthesis, characterization and structure-property relationship of new 1,4-cyclohexylene ring containing PAESs were comprehensively studied. Different polymerization techniques were used to synthesize polymers with different segmental lengths. The monomer, 4,4'-[trans-1,4-cyclohexanebis(methylene)] bisphenol (CMB), was synthesized and fully characterized. Based on 4,4′-dihydroxy-p-terphenyl (DHTP), 4,4′-dihydroxybiphenyl (DHBP) and the CMB monomer, homopolymer and random copolymers of PAES were prepared with high molecular weights and high glass transition temperatures. Dynamic mechanical analysis (DMA) on these polymers showed multiple sub-Tg relaxations. A large increase in the ultimate elongation was obtained with the CMB and DHTP containing sample, which could be due to the strong sub-Tg relaxations observed from the DMA results. A series of four acid chloride monomers were synthesized and polymerized with phenol terminated PAES oligomers. Solution polymerization and pseudo-interfacial polymerization techniques were used to prepare both bisphenol-A (bis-A) based and DHBP based PAES oligomers. With the incorporation of the trans-1,4-cyclohexylene units, decreases in the glass transition temperatures were observed from both the bis-A based and the DHBP based polymers. However, melting transitions were only observed in the DHBP based trans-1,4-cyclohexylene containing PAESs. Crystallinity was confirmed by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). A mechanical property study of the high molecular weight trans-1,4-cyclohexylene containing polymer samples showed moderate ultimate elongation enhancements. A series of PAES-polyester multiblock copolymers were synthesized with both solution method and melt polymerization. In the solution method, phenol terminated PAES oligomers and the acid chloride terminated poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) oligomers were presynthesized and coupled in solution. The molecular weights of the polymer products obtained from the solution method were limited by solubility issues. Melt phase polymerization was employed to obtain high molecular weight polymers. Hydroxy ethoxy terminated PAES oligomers were synthesized and polymerized with 1,4-cyclohexanedimethanol (CHDM) and dimethyl terephthalate (DMT) in the melt. Polymers with high molecular weights were obtained. Tensile test results suggested that the mechanical properties of these polymers were dominated by the PAES components with polyester contents up to 20 wt%. Melting transitions were observed from polymers with higher polyester contents, and these polymers exhibited limited solubility in common organic solvents. / Ph. D.
30

Investigating the influence of fabrication parameters on the diameter and mechanical properties of polysulfone ultrafiltration hollow-fibre membranes

Rugbani, Ali 12 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Polysulfone hollow-fibre membranes were fabricated via the dry-wet solution spinning technique. The objective was to demonstrate the influence of the various fabrication parameters on the diameter and mechanical properties of the hollow-fibre membranes and to optimize the spinning process by controlling these parameters with a computer control system. The effects of the operation parameters were investigated using an experimental design based on a fractional factorial method (Taguchi’s design of experiments). The parameters that were considered are the spinneret size, dope solution temperature, bore fluid temperature, coagulation bath temperature, dope extrusion rate, bore flow rate and the take-up speed. A new pilot solution spinning plant was installed and upgraded, and a computer control system, based on LabView, was developed to control, monitor and log the experimental data. The diameter of the hollow-fibres were determined using a scanning electron microscope (SEM) while the mechanical properties were measured using a tensile tester. The effects of diameter size and wall thickness of the hollow-fibres on the performance of the membranes were studied. The results showed the significance of the fabrication parameters that dominate the diameter and strength of the hollow-fibres. / AFRIKAANSE OPSOMMING: Polisulfoon holvesel membrane is met ‘n droë-nat oplossingspin proses vervaardig. Die doel hiermee was om die invloed van verskeie vervaardigingsparameters op die deursnee en meganiese eienskappe van die holvesel membrane te demonstreer asook om die spin proses te optimeer deur gerekenariseerde beheer van die aanleg. ‘n Eksperimentele ontwerp, gebaseer op ‘n gedeeltelike faktoriaal metode (Taguchi se eksperimentele ontwerp) is gebruik om die invloed van die vervaardigingsparameters te ondersoek. Die parameters wat oorweeg is, is spindop grootte, materiaal temperatuur, boorvloeistof temperatuur, stolbad temperatuur, materiaal ekstrusie tempo and opwen spoed. ‘n Nuwe oplossingspin loodsaanleg was geïnstalleer en opgegradeer en ‘n rekenaar beheerstelsel, gebaseer op LabView, is ontwikkel om die aanleg te beheer, moniteer en eksperimentele data te stoor. Die deursnee van die holvesel is gemeet met ‘n skanderingelektron mikroskoop (SEM) terwyl die meganiese eienskappe bepaal is met ‘n trektoets apparaat. Die effek van die deursnee en wanddikte van die holvesels op die werkverrigting van die membrane is ook bestudeer. Die resultate toon watter vervaardigingsparameters is beduidend vir die deursnee en sterkte van die holvesels.

Page generated in 0.1103 seconds