• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Poisson hyperplane tessellation: Asymptotic probabilities of the zero and typical cells

Bonnet, Gilles 17 February 2017 (has links)
We consider the distribution of the zero and typical cells of a (homogeneous) Poisson hyperplane tessellation. We give a direct proof adapted to our setting of the well known Complementary Theorem. We provide sharp bounds for the tail distribution of the number of facets. We also improve existing bounds for the tail distribution of size measurements of the cells, such as the volume or the mean width. We improve known results about the generalised D.G. Kendall's problem, which asks about the shape of large cells. We also show that cells with many facets cannot be close to a lower dimensional convex body. We tacle the much less study problem of the number of facets and the shape of small cells. In order to obtain the results above we also develop some purely geometric tools, in particular we give new results concerning the polytopal approximation of an elongated convex body.

Page generated in 0.0901 seconds