• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Hydrodynamics of Pool-Riffle Sequences with Changing Bedform Length

Obach, Lana M. January 2011 (has links)
Previous research has demonstrated that pool-riffle bedforms play a critical role in channel stability and ecosystem health in many natural gravel-bed channels. Although the bedform length is known to scale with channel width, no experimental research has yet isolated the effect of bedform length on pool-riffle hydrodynamics. To improve the understanding of the hydrodynamics of these bedforms so that they can be better incorporated in restoration practices, flume experiments were conducted testing the flow at seven different bedform lengths. Velocity profiles are measured in a 17 m flume with movable PVC bedforms using ultrasonic velocity profilers (UVPs). Smooth two-dimensional (no sinuosity) bedforms are used in order to isolate the key dynamics in convective acceleration and deceleration. The angle of transition between pool and riffle heights was 7°, so that permanent flow separation did not occur. Parameters calculated from the velocity and turbulence profiles include the Coles’ wake parameter (a measure of the deviation from the log law), shear stress estimated from the velocity profile, shear stress estimated from the Reynolds shear stress, and vertical velocity. From the individual velocity time series, the integral length scale and the integral time scales are also calculated. Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and turbulence within a channel. In the pool, energy is dissipated both through turbulence and as the flow is redistributed to uniform flow conditions. In the riffle, kinetic energy increases as the flow velocity increases, and as the length increases, the flow moves towards a new uniform flow condition. The results start to explain the reasons behind the persistent scaling relation between width and bedform length. It can be concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio is greater than approximately 1:5.0 when the riffle length is held constant, and that uniform flow conditions are no longer observed at the end of the pool when the bedform length ratio exceeds 1:7.0 when the pool length is held constant. Future research should concentrate on extending the results to include three-dimensional pool-riffle configurations, repeating bedform configurations, internal scaling parameters, and sediment transport. Ultimately, as the hydrodynamics of pool-riffle sequences are better understood, better bedform designs can be implemented in restoration projects.
2

The Hydrodynamics of Pool-Riffle Sequences with Changing Bedform Length

Obach, Lana M. January 2011 (has links)
Previous research has demonstrated that pool-riffle bedforms play a critical role in channel stability and ecosystem health in many natural gravel-bed channels. Although the bedform length is known to scale with channel width, no experimental research has yet isolated the effect of bedform length on pool-riffle hydrodynamics. To improve the understanding of the hydrodynamics of these bedforms so that they can be better incorporated in restoration practices, flume experiments were conducted testing the flow at seven different bedform lengths. Velocity profiles are measured in a 17 m flume with movable PVC bedforms using ultrasonic velocity profilers (UVPs). Smooth two-dimensional (no sinuosity) bedforms are used in order to isolate the key dynamics in convective acceleration and deceleration. The angle of transition between pool and riffle heights was 7°, so that permanent flow separation did not occur. Parameters calculated from the velocity and turbulence profiles include the Coles’ wake parameter (a measure of the deviation from the log law), shear stress estimated from the velocity profile, shear stress estimated from the Reynolds shear stress, and vertical velocity. From the individual velocity time series, the integral length scale and the integral time scales are also calculated. Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and turbulence within a channel. In the pool, energy is dissipated both through turbulence and as the flow is redistributed to uniform flow conditions. In the riffle, kinetic energy increases as the flow velocity increases, and as the length increases, the flow moves towards a new uniform flow condition. The results start to explain the reasons behind the persistent scaling relation between width and bedform length. It can be concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio is greater than approximately 1:5.0 when the riffle length is held constant, and that uniform flow conditions are no longer observed at the end of the pool when the bedform length ratio exceeds 1:7.0 when the pool length is held constant. Future research should concentrate on extending the results to include three-dimensional pool-riffle configurations, repeating bedform configurations, internal scaling parameters, and sediment transport. Ultimately, as the hydrodynamics of pool-riffle sequences are better understood, better bedform designs can be implemented in restoration projects.
3

Heat transport and tracing within the hyporheic zone of a pool-riffle-pool sequence

Swanson, Travis Eric 26 October 2010 (has links)
Hyporheic water is thought to infiltrate at the head of a riffle which in turn is complemented by upwelling back to the stream at the tail of the riffle in a pool-riffle-pool (PRP) sequence. Heat tracing is a potentially useful method to characterize these hyporheic flow paths and quantify associated fluxes. Temperature was monitored within a PRP sequence for several days. Temperature in the hyporheic zone reflected the diel temperature change in the river but not uniformly. The observed thermal pattern exhibited deeper penetration of thermal oscillations below the head pool and shallower penetration below the tail pool. This pattern is consistent with the conceptual model of hyporheic exchange over a PRP sequence. One-dimensional analytical heat transport models were used at different points below the PRP sequence to estimate distributed vertical fluid fluxes. The calculated fluxes exhibit a trend that follows the expected distribution for a PRP sequence but modified for a losing stream. Deviation of both magnitude and distribution of fluxes from the conceptual ‘downwelling-to-upwelling’ model is partly due to the dominantly losing conditions at the study site but the trends are consistent with a losing stream undergoing hyporheic exchange. Violation of the assumptions in the analytical models most likely adds error to flux estimates. For this study, flux estimation methods using a temperature time series amplitude analysis more closely matched field measurements than phase methods. / text
4

Effekt av biotopvård på öringpopulationen i två vattendrag

Sahlberg, Tony January 2010 (has links)
<p>I have done a follow up study of the restoration of two rivers, Röälven and Grundan, in order to evaluate the effects of the restoration on the endemic population of trout. Both rivers have been used for timber floating during many years throughout the 20<sup>th</sup> century, and because of this, had all obstacles such as rocks and wood parts removed. In 2004-2005 both rivers were restored, and rocks and wood were put back into the rivers. Spawning grounds were created and boulder dams were constructed to promote the streaming water. The result showed that the trout population of both rivers increased after the restoration, but also that the trout population of Röälven increased more than that of Grundan. My conclusion is that the way the restoration is of a river contributes to the result.</p>
5

Effekt av biotopvård på öringpopulationen i två vattendrag

Sahlberg, Tony January 2010 (has links)
I have done a follow up study of the restoration of two rivers, Röälven and Grundan, in order to evaluate the effects of the restoration on the endemic population of trout. Both rivers have been used for timber floating during many years throughout the 20th century, and because of this, had all obstacles such as rocks and wood parts removed. In 2004-2005 both rivers were restored, and rocks and wood were put back into the rivers. Spawning grounds were created and boulder dams were constructed to promote the streaming water. The result showed that the trout population of both rivers increased after the restoration, but also that the trout population of Röälven increased more than that of Grundan. My conclusion is that the way the restoration is of a river contributes to the result.
6

Testing and Refining a Unique Approach for Setting Environmental Flow and Water Level Targets for a Southern Ontario Subwatershed

Beaton, Andrew 15 August 2012 (has links)
In this study Bradford’s (2008) approach for setting ecological flow and water level targets is tested and refined through application within the Lake Simcoe Region Conservation Authority’s (LSRCA) subwatershed of Lover’s Creek. A method for defining subwatershed objectives and identifying habitat specialists through expert input is proposed and tested. The natural regime of each streamflow and wetland site is characterized along with the hydrological alteration at each site. Potential ecological responses to the hydrologic alterations are then hypothesized for the different types of changes calculated at each site. Methods for setting overall ecosystem health and specific ecological objective flow targets are proposed and tested. These targets are integrated into a flow regime for each site and a process for using this information for decision making is suggested. Flow magnitude quantification is attempted using hydraulic modelling and sediment transport equations, however the data used were found to be inadequate for this application. The accuracy of the targets developed using the method presented in this paper is mainly limited by the accuracy of the hydrological model and quantified flow magnitudes. Recommendations for improving these components of the assessment are made. The unique approach and recommendations presented in this paper provide explicit steps for developing flow targets for subwatersheds within the LSRCA. This research contributes toward the advancement of EFA within the LSRCA, which provides opportunity for enhanced protection and restoration of ecosystem health across the watershed. / Lake Simcoe Region Conservation Authority

Page generated in 0.0325 seconds