• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enabling solid lipid nanoparticle drug delivery technology by investigating improved production techniques

Triplett, Michael David, II January 2004 (has links)
No description available.
2

Dissolution Mechanisms of Amorphous Solid Dispersions

Alexandru Deac (16379253) 16 June 2023 (has links)
<p>The dissolved concentration of an active pharmaceutical ingredient in biological fluids is of significant importance for establishing a therapeutic effect in patients. However, the current pharmaceutical landscape is abundant in poorly soluble drugs that require solubility enhancing techniques to enable their administration. A promising technique, with increasing commercial success, is to molecularly mix drug and polymer to create an amorphous solid dispersion (ASD). While these mixtures provide enhanced drug solubility and dissolution in aqueous solutions, the mechanistic processes by which they release drug into solution are not well understood. Some unexplained behaviors include rapid drug release even at the maximum supersaturated concentration and spontaneous formation of drug-rich nanoparticles. These are beneficial for rapidly achieving and maintaining a highly supersaturated drug concentration during absorption, if crystallization is inhibited. However, the phenomena occur at typically low drug loading and are abruptly lost above a certain threshold termed the ‘limit of congruency’ (LoC), which has been reported to vary based on the drug-polymer system. In this research, the mechanisms underpinning ASD release at low and high drug loading were studied, and the factors affecting LoC were mechanistically explored by performing dissolution experiments and utilizing imaging, separation, thermal analysis, and spectroscopy methods to characterize the materials in the presence and absence of water. The results show that ASDs developed a gel layer on the surface when exposed to aqueous solution. This water-rich environment was thermodynamically unstable and phase separated into hydrophilic and hydrophobic phases. The morphology of the hydrophobic phase was directly related to the ASD release behavior, where ASDs below the LoC exhibited a dispersed and stable hydrophobic phase morphology, and ASDs above the LoC displayed a continuous or aggregated morphology. In cases where thermodynamic factors were rate limiting, LoC was inferred from features on the ternary phase diagram. Moreover, drug-polymer interactions and polymer molecular weight were demonstrated to affect the morphology of the hydrophobic phase and ultimately the LoC. The conclusions from this work provide the basis of a theoretical framework for rationally designing ASDs and optimizing their release. </p>
3

Drug Dissolution under Physiologically Relevant Conditions<i> In Vitro</i> and <i>In Vivo</i>

Persson, Eva January 2006 (has links)
<p>The general aim of the present project was to increase the understanding of the in vivo dissolution of poorly soluble drugs and thereby improve possibility to predict in vivo solubility from substance properties. Increased understanding of the in vivo limitations of drug solubility could potentially also generate ideas for improved formulation principles for poorly soluble compounds and more relevant in vitro dissolution test methods used in formulation development.</p><p>The dynamic gastrointestinal secretory and enzymatic responses to a liquid meal were studied in human intestinal fluid (HIF) by in vivo perfusion of a nutritional drink. The main diversity found compared to simulated intestinal fluids was the presence of dietary lipids in fed human intestinal fluid. This difference was showed to be of importance in the solubility of low soluble drugs, since this parameter was underestimated in the simulated fluid. Thus suggesting that simulated intestinal fluids should be prepared with the addition of dietary lipids for better in vitro in vivo predictions. </p><p>Solubility and dissolution determinations in fasted and fed HIF showed that the solubility was higher in fed state fluid, probably owing to the higher concentration of lipids in this media. The higher solubility was correlated to both the lipophilicity and aqueous solubility of the drug. The dissolution rate also increased, but not to the same extent as the solubility. These findings need to be considered in the design of in vitro models and in the prediction of food effects on oral bioavailability of poorly soluble drugs.</p><p>In addition, an in vivo porcine perfusion study was performed to investigate importance of different mechanisms in food-drug interactions. The results showed that solubilisation might be a more important factor than P-gp inhibition for food-related effects on the intestinal absorption kinetics of Class II drugs. </p>
4

Drug Dissolution under Physiologically Relevant Conditions In Vitro and In Vivo

Persson, Eva January 2006 (has links)
The general aim of the present project was to increase the understanding of the in vivo dissolution of poorly soluble drugs and thereby improve possibility to predict in vivo solubility from substance properties. Increased understanding of the in vivo limitations of drug solubility could potentially also generate ideas for improved formulation principles for poorly soluble compounds and more relevant in vitro dissolution test methods used in formulation development. The dynamic gastrointestinal secretory and enzymatic responses to a liquid meal were studied in human intestinal fluid (HIF) by in vivo perfusion of a nutritional drink. The main diversity found compared to simulated intestinal fluids was the presence of dietary lipids in fed human intestinal fluid. This difference was showed to be of importance in the solubility of low soluble drugs, since this parameter was underestimated in the simulated fluid. Thus suggesting that simulated intestinal fluids should be prepared with the addition of dietary lipids for better in vitro in vivo predictions. Solubility and dissolution determinations in fasted and fed HIF showed that the solubility was higher in fed state fluid, probably owing to the higher concentration of lipids in this media. The higher solubility was correlated to both the lipophilicity and aqueous solubility of the drug. The dissolution rate also increased, but not to the same extent as the solubility. These findings need to be considered in the design of in vitro models and in the prediction of food effects on oral bioavailability of poorly soluble drugs. In addition, an in vivo porcine perfusion study was performed to investigate importance of different mechanisms in food-drug interactions. The results showed that solubilisation might be a more important factor than P-gp inhibition for food-related effects on the intestinal absorption kinetics of Class II drugs.
5

Investigation and Prediction of Small Intestinal Precipitation of Poorly Soluble Drugs : a Study Involving in silico, in vitro and in vivo Assessment

Carlert, Sara January 2012 (has links)
The main objectives of the present project were to increase the understanding of small intestinal precipitation of poorly soluble pharmaceutical drugs, investigate occurrence of crystalline small intestinal precipitation and effects of precipitation on absorption. The aim was to create and evaluate methods of predicting crystalline small intestinal drug precipitation using in vivo, in vitro and in silico models. In vivo small intestinal precipitation from highly supersaturated solutions of two weakly basic model drugs, AZD0865 and mebendazole, was investigated in humans and canine models. Potential precipitation of AZD0865 was investigated by examining dose dependent increases in human maximum plasma concentration and total exposure, which turned out to be dose linear over the range investigated, indicating no significant in vivo precipitation. The small intestinal precipitation of mebendazole was investigated from drug concentrations and amount of solid drug present in dog jejunum as well as through the bioavailability after direct duodenal administration in dogs. It was concluded that mebendazole small intestinal precipitation was limited, and that intestinal supersaturation was measurable for up to 90 minutes. In vitro precipitation methods utilizing simulated or real fasted gastric and intestinal fluids were developed in order to simulate the in vivo precipitation rate. The methods overpredicted in vivo precipitation when absorption of drug was not simulated. An in vitro-in silico approach was therefore developed, where the in vitro method was used for determining the interfacial tension (γ), necessary for describing crystallization in Classical Nucleation Theory (CNT). CNT was evaluated using a third model drug, bicalutamide, and could successfully describe different parts of the crystallization process of the drug. CNT was then integrated into an in silico absorption model. The in vivo precipitation results of AZD0865 and mebendazole were well predicted by the model, but only by allowing the fundamental constant γ to vary with concentration. Thus, the in vitro-in silico approach could be used for small intestinal precipitation prediction if the in vitro concentration closely matched in vivo small intestinal concentrations.

Page generated in 0.0733 seconds