• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 11
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 25
  • 16
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Změny koncentrací fosforu a železa v pórové vodě sedimentu měřené pomocí gelových minipeeperů / Changes of phosphorus and iron concentrations in pore water vertical profiles of hypertrophic reservoir measured by gel minipeepers.

PECHÁČKOVÁ, Petra January 2008 (has links)
Sediment cores obtained during the year 2006 (April, June, September), originated from inflow and dam sites in hypertrophic reservoir were incubated and analyzed in the laboratory under in situ conditions. The aim of this study was to find out the release rates of phosphorus and iron and to define the changes in the concentrations of dissolved compounds in pore water in the first 6 cm in the sediment. Gel minipeepers were used to measure the vertical profiles of dissolved analyts in pore water. This method was found suitable for investigation of P, Fe and basic ions concentrations. Differences between inflow and dam site were found
12

Optimizing Carbon to Nitrogen Ratios to Improve Nitrogen Removal in Agricultural Drainage Ditches

Faust, Derek Ronald 07 May 2016 (has links)
Since 1961, a fourold increase in application of fertilizers in the United States has helped to double crop yields. Nutrients not used by crops are often transported to aquatic ecosystems adjacent to agricultural fields. In the Lower Mississippi Alluvial Valley, nutrients enter agricultural drainage ditches and are transported to receiving water bodies, eventually reaching the Gulf of Mexico. The annual occurrence of a hypoxic zone in the Gulf of Mexico is caused by nitrogen loads from the Mississippi River Basin. Objectives of these studies were: (1) evaluate how organic carbon amendments affect nitrate-nitrogen removal in agricultural drainage ditch systems, (2) determine effects of organic carbon amendments and flow rate on nitrate-nitrogen removal in a semi-controlled field setting using experimental drainage ditches, and (3) assess relationships between organic carbon and nitrogen content of overlying water, pore water, and sediments of drainage ditches throughout the Lower Mississippi Alluvial Valley. In laboratory experiments, nitrate-nitrogen removal in dissolved and particulate organic carbon treatments was greater than 90% compared to as low as 60% in control treatments. The optimal carbon-to-nitrogen ratio of organic carbon amendments for efficient nitrate-nitrogen removal was 5:1. Studies in experimental drainage ditches revealed that flow substantially lowered the ability of organic carbon amendments to remove nitrate-nitrogen with a maximum percent nitrate-nitrogen reduction of 31.6% in a dissolved organic carbon treatment, although implementation of low-grade weirs in experimental drainage ditches did result in removal of nitrate nitrogen in all treatments and at all flow rates. Examining the nitrogen and organic carbon contents in agricultural drainage ditches throughout the Lower Mississippi Alluvial Valley revealed that organic carbon content in overlying water, pore water, and sediments is lower than observed in other wetland-like ecosystems and indeed may be limiting denitrification and other nitrogen removal processes. Increasing organic carbon content overall could be achieved by using organic carbon amendments, but this body of research highlights that additional studies are necessary to ensure successful implementation of organic carbon amendments that reach their greatest potential as a management practice to effectively remove nitrate-nitrogen in the realistic settings of agricultural drainage ditches.
13

Helium Isotope Dating of Pore Water in the St. Clair Basin

Hatch, David 04 1900 (has links)
<p> An age of approximately 55K years was found for the St. Clair basin clays using helium isotope dating. This is about 5 times larger than the date obtained from the more accepted carbon-14 method and from other geological evidence. Diffusion of helium from crustal rocks against a flow of approximately 0.03-0.05 cm a· ' is the primary reason for this discrepancy. Mixing of the groundwater with a meteoric component has an opposite effect tending to lower the helium age. </p> / Thesis / Bachelor of Science (BSc)
14

The Effects of Vibration on the Penetration Resistance and Pore Water Pressure in Sands

Bonita, John Anthony 07 November 2000 (has links)
The current approach for using cone penetration test data to estimate soil behavior during seismic loading involves the comparison of the seismic stresses imparted into a soil mass during an earthquake to the penetration resistance measured during an in-situ test. The approach involves an indirect empirical correlation of soil density and other soil related parameters to the behavior of the soil during the loading and does not involve a direct measurement of the dynamic behavior of the soil in-situ. The objective of this research was to develop an approach for evaluating the in-situ behavior of soil during dynamic loading directly through the use of a vibrating piezocone penetrometer. Cone penetration tests were performed in a large calibration chamber in saturated sand samples prepared at different densities and stress levels. A total of 118 tests were performed as part of the study. The piezocone penetrometer used in the investigation was subjected to a vibratory load during the penetration test. The vibratory units used in the investigations were mounted on top of a 1m section of drill rod that was attached at the lower end to the cone penetrometer. Pneumatic impact, rotary turbine, and counter rotating mass vibrators were used in the investigation. The vibration properties generated by the vibratory unit and imparted into the soil were measured during the penetration test by a series of load cells and accelerometers mounted below the vibrator and above the cone penetrometer, respectively. The tip resistance, sleeve friction and pore water pressure were also measured during the test by load cells and transducers in the cone itself. The vibration and cone data were compiled and compared to evaluate the effect of the vibration on the penetration resistance and pore water pressure in the soil mass. The results of the testing revealed that the influence of the vibration on the penetration resistance value decreased as the density and the mean effective stress in the soil increased, mainly because the pore water pressure was not significantly elevated throughout the entire zone of influence of the cone penetometer at the elevated stress and density conditions. An analysis of the soil response during the testing resulted in the generation of a family of curves that relates the soil response during the vibratory and static penetration to the vertical effective stress and density of the soil. The data used to generate the curves seem to agree with the proposed values estimated through the empirical relationship. An evaluation of the effects of the frequency of vibration was also performed as part of the study. The largest reduction in penetration resistance occurred when the input vibration approximated the natural frequency of the soil deposit, suggesting that resonance conditions existed between the input motion and the soil. An energy-based approach was developed to compare the energy imparted into the soil by the vibrator to the energy capacity of the soil. The input energy introduced into the soil mass prior to the reduction in penetration resistance agrees well with the energy capacity of the soil, especially in tests at the low effective stress level where a high excess pore water pressure was observed. / Ph. D.
15

Lateral swelling pressure in variably saturated expansive clay

Garrett, Steven Ray 12 May 2023 (has links) (PDF)
Lateral swelling pressure induced in expansive soils upon wetting can adversely impact the performance and integrity of earthen structures and foundations. The yearly cost associated with damage to structures from expansive clays in the United States is estimated to exceed the loss associated with natural disasters such as earthquakes, floods, and hurricanes. The main objective of this dissertation is to provide new insight into the evolution of lateral swelling pressure in variably saturated expensive soils under infiltration via physical testing. In the first part of this study, a new laboratory-scale testing apparatus was built to measure lateral and vertical swelling pressures under anisotropic conditions. The testing apparatus was used to investigate the effect of compaction level on lateral swelling pressure in an expansive clay collected from central Arkansas. Results show that the higher the compaction, the higher the lateral swelling pressure. In contrast, compaction was found to have an insignificant effect on the vertical swelling pressure at a compaction level of less than 90%. In the second part, the laboratory-scale testing apparatus was employed to test the effects of four additives (lime, lime kiln dust, cement, and cement kiln dust). The results showed that the addition of a high calcium additive could significantly reduce the swelling pressures of expansive clay. The third part of the dissertation involved full-scale testing of lateral pressures in an expansive clay upon infiltration. A heavily instrumented 3-m high masonry wall backfilled with an expansive clay was built and subjected to infiltration. The degree of saturation, pore-water pressure, temperature, suction, and lateral and vertical pressures were monitored at different locations during the test. Results showed that the development of lateral pressure is rapid during initial saturation and levels out as the clay approaches saturation levels. This finding highlights the importance of monitoring lateral pressure over time to accurately predict its behavior. The study also found that lateral pressure develops prior to vertical pressure, depending on the area and restraint.
16

Effect of Environmental Factors on Pore Water Pressure in River Bank Sediments, Sollefteå, Sweden / Påverkan av miljöfaktorer på porvattentrycki flodbanksediment, Sollefteå, Sverige

Fritzson, Hanna January 2017 (has links)
Pore water pressure in a silt slope in Sollefteå, Sweden, was measured from 2009-2016. The results from2009-2012 were presented and evaluated in a publication by Westerberg et al. (2014) and this report is an extension of that project.In a silt slope the pore water pressures are generally negative, contributing to the stability of theslope. In this report the pore water pressure variations are analyzed using basic statistics and a connection between the pore water pressure variations, the geology and parameters such as temperature, precipitation and soil moisture are discussed.The soils in the slope at Nipuddsvägen consists of sandy silt, silt, clayey silt and silty clay. The main findings were that at 2, 4 and 6 m depth there are significant increases and decreases in the pore water pressure that can be linked with the changing of the seasons, for example there is a significant increase in the spring when the ground frost melts. As the seasons change, so do the temperature and amount and type of precipitation. Other factors that vary with the season are the amount of net radiation, wind speed and relative humidity, all of which affect the amount of evapotranspiration. At greater depths the pore water pressue is most likely affected by a factor/factors that varies from year to year, possibly the total amount of rainfall. Therefore, the anticipated increase in precipitation in Scandinavia due to climate change could be an important factor influencing slope stability.What precipitation, temperature and evapotranspiration have in common is that they affect the amount of water infiltrating the soil, and thereby the soil moisture content. How the soil moisture is distributed and flows through the soil (sub-surface flow) is governed by the different soil types and their mutual order in the slope, as well as by factors affecting the structure of the soil, e.g. animal burrows and aggregation. The formation of ground frost also affects the way in which the water present in the soil is redistributed.At c. 14 m depth in the slope, there is a saturated layer with positive pore water pressures, which could be one of several such layers. The overall groundwater situation in a silt slope is complex; several different bodies of water can develop, and to get a complete picture of the ground water situation (andthereby also the pore water pressure variations) thorough hydrological surveys are needed. / Under  2009-2016  mättes  porvattentrycket  i  en  siltslänt  i  Sollefteå.  Resultaten  från  2009-2012presenterades och utvärderades i en publikation av Westerberg et al. (2014) och detta examensarbete är en förlängning av det projektet.I en siltslänt är porvattentrycket vanligtvis negativt vilket bidrar till stabiliteten i slänten. I den härrapporten är variationerna av porvattentrycket analyserade med hjälp av enkel statistik och en koppling mellan variationerna och geologin samt parametrar så som temperatur, nederbörd och fukthalt i marken diskuteras.Jordarterna i slänten vid Nipuddsvägen består av sandig silt, silt, lerig silt och siltig lera. Slutsatsen var att på 2, 4 och 6 m djup ökade och minskade porvattentrycket med årstiderna, till exempel ökade porvattentrycket signifikant vid tjällossningen. När årstiderna skiftar ändras även temperaturen och mängden, och typen, av nederbörd. Andra faktorer som varierar över året är netto-instrålningen, vindhastigheten och den relativa fuktigheten och dessa faktorer påverkar i sin tur evapotranspirationen. På större djup beror antagligen portrycksvariationerna på någon eller några faktorer som skiljer sig åt från år till år, möjligtvis den totala mängden nederbörd. Därmed skulle den ökade nederbörd som förväntas i Skandinavien på grund av klimatförändringarna kunna påverka släntstabiliteten.Vad nederbörd, temeperatur och evapotranspiration har gemensamt är att de påverkar mängden vatten som infiltrerar marken, det vill säga de påverkar markens fukthalt. Hur vattnet är födelat i marken beror på de olika jordarterna och deras inbördes ordning i slänten, men också av faktorer som påverkar markens struktur så som aggregation och uppluckring av jorden på grund av marklevande djurs aktivitet. Även formationen av tjäle på vintern har troligtvis en viss inverkan på hur vattnet i marken omfördelas.På 14 m djup finns ett vattenmättat lager med positiva porvattentryck vilket skulle kunna vara ett av flera sådana lager. I en siltslänt är grundvattensituationen mycket komplex, flera magasin av vatten kan bildas. För att få en bra bild av grundvattensituationen (och där med också porvattentrycksvariationerna)behöver noggranna hydrologiska undersökningar genomföras.
17

Effects of heterogeneity distribution on hillslope stability during rainfalls

Cai, Jing-sen, Yan, E-chuan, Yeh, Tian-chyi Jim, Zha, Yuan-yuan 04 1900 (has links)
The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity (K-s) and the observed pressure head (P) distribution within a hillslope. The cross-correlation analysis method was used to investigate the effects of the variance of lnK(s), spatial structure anisotropy of lnK(s), and vertical infiltration flux (q) on P at some selected locations within the hillslope. The cross-correlation analysis shows that, in the unsaturated region with a uniform flux boundary, the dominant correlation between P and Ks is negative and mainly occurs around the observation location of P. A relatively high P value is located in a relatively low Ks zone, while a relatively low P value is located in a relatively high Ks zone. Generally speaking, P is positively correlated with q/Ks at the same location in the unsaturated region. In the saturated region, the spatial distribution of K-s can significantly affect the position and shape of the phreatic surface. We therefore conclude that heterogeneity can cause some parts of the hillslope to be sensitive to external hydraulic stimuli (e.g., rainfall and reservoir level change), and other parts of the hillslope to be insensitive. This is crucial to explaining why slopes with similar geometries would show different responses to the same hydraulic stimuli, which is significant to hillslope stability analysis. (C) 2016 Hohai University. Production and hosting by Elsevier B.V.
18

Análise comparativa de inibidores de corrosão na água poro e no concreto armado para aço carbono CA-50 / Comparative analysis of corrosion inhibitors in the pore water and in reinforced concrete for carbon steel Ca-50

Ossorio Dominguez, Anile January 2016 (has links)
No presente trabalho analisa-se o comportamento do aço de reforço ante à corrosão, com o uso dos inibidores: nitrito de sódio, fosfato de sódio e etalonamina, na água de poros contaminada com cloreto, e no concreto com a finalidade de analisar seus resultados e seus mecanismos diferenciados. Para cumprir este objetivo o presente trabalho divide-se em duas etapas: uma primeira etapa baseada em simular sinteticamente a água de poro de um concreto, cuja solução é KOH 28g/l+NaOH 4g/l. Essa água de poro é simulada em ambiente marinho, cuja solução é KOH 28g/l + NaOH 4g/l+NaCl 35g/l, e a esta solução referência incorporamse os inibidores (20g/l da cada um). Realizaram-se ensaios de espectroscopia de impedância eletroquímica (EIE) (após 3 e 72 horas de imersão) e curvas de polarização (após 72 horas de imersão) com vistas a obter respostas da cinética da corrosão ante a cada solução. Obteve-se o melhor comportamento para a água de poros. No caso da água de poro contaminada por cloretos, o melhor comportamento se obteve para o inibidor nitrito de sódio. Na segunda etapa adotou-se apenas o inibidor nitrito de sódio, pois estatisticamente as eficiências dos três inibidores foram muito similares. Analisou-se o nitrito de sódio em amostras reais de concreto armado contaminado com cloreto de sódio. Para isso se elegeram dois tipos de cimentos (CP IV e CP V) e três relações água-cimento (a/c-0.4, a/c-0.5, a/c- 0.65). Para simular o ambiente marinho, realizaram-se ensaios acelerados de cloretos. Comparam-se métodos de análises simuladas sinteticamente e reais, concluindo-se em ambos meios, embora fossem um solido e outro líquido o inibidor Nitrito de Sódio aumento a sua eficiência com os ciclos de exposição. / In this paper it is analyzed the behavior of reinforcing steel against corrosion using inhibitors: sodium nitrate, sodium phosphate and ethanolamine in water contaminated with chlorides pore and concrete, in order to analyzing the results and different mechanisms. To meet the objective of this work, it was divided into two stages, a first stage based on synthetically simulate the pore water of a concrete, through the following solution KOH 28g/l+NaOH 4g/l, this same solution simulated pore water to a marine environment it would be KOH 28g/l + NaOH 4g/l+NaCl 35g/l, it is then incorporated into both reference solutions inhibitors in a proportion, (20g/l de cada um). Assays were performed electrochemical impedance spectroscopy (EIE) (last 3 hours and 72 hours of immersion) and polarization curves (last 72 hours of immersion) in order to obtain responses corrosion kinetics in each solution. the best performance was obtained in the pore water. In the case of water contaminated with chlorides pore, the best performance was obtained in the presence of sodium nitrite inhibitor. In the second step was performed only with the inhibitor sodium nitrate, as statistically efficiencies of the three inhibitors were similar. Sodium nitrate was analyzed in real samples of reinforced concrete contaminated with chlorides of sodium. So they were chosen two types of cement CP- IV and CP-V, cement water three relationships 0.4, a/c-0.5, a/c- 0.65. In this case to simulate the marine environment, accelerated tests were performed chloride. They were compared the methods of analysis, simulated synthetically and simulated in real concrete.
19

Effect of advective pore water flow on degradation of organic matter in permeable sandy sediment : - A study of fresh- and brackish water

Hofman, Birgitta January 2005 (has links)
<p>The carbon metabolism in costal sediments is of major importance for the global carbon cycle. Costal sediments are also subjected to physical forcing generating water fluxes above and through the sediments, but how the physical affect the carbon metabolism is currently poorly known. In this study, the effect of advective pore water flow on degradation of organic matter in permeable sandy sediment was investigated in a laboratory study during wintertime. Sediments were collected from both brackish water (Askö) and from a fresh water stream (Getå Stream). In two chamber experiments, with and without advective pore water flow, the degradation of organic matter was measured through carbon dioxide analysis from water and headspace. In Askö sediments mineralization rates ranged from 3.019 - 5.115 mmol C m-2 d-1 and 3.139 mmol C m-2 d-1 with and without advective pore water flow, respectively. Those results correspond with results from earlier studies of carbon mineralization rates in sediment in the North Sea and the Baltic Sea. There were no significant differences between the two groups in the Askö sediment. In Getå Stream sediments mineralization rates ranged between 4.059 mmol C m-2 d-1 and 6.806 mmol C m-2 d-1 with and without advective flow, respectively. The mineralization rates for Getå Stream correspond with earlier studies of carbon mineralization rates in a stream in New Hampshire.</p>
20

Effect of advective pore water flow on degradation of organic matter in permeable sandy sediment : - A study of fresh- and brackish water

Hofman, Birgitta January 2005 (has links)
The carbon metabolism in costal sediments is of major importance for the global carbon cycle. Costal sediments are also subjected to physical forcing generating water fluxes above and through the sediments, but how the physical affect the carbon metabolism is currently poorly known. In this study, the effect of advective pore water flow on degradation of organic matter in permeable sandy sediment was investigated in a laboratory study during wintertime. Sediments were collected from both brackish water (Askö) and from a fresh water stream (Getå Stream). In two chamber experiments, with and without advective pore water flow, the degradation of organic matter was measured through carbon dioxide analysis from water and headspace. In Askö sediments mineralization rates ranged from 3.019 - 5.115 mmol C m-2 d-1 and 3.139 mmol C m-2 d-1 with and without advective pore water flow, respectively. Those results correspond with results from earlier studies of carbon mineralization rates in sediment in the North Sea and the Baltic Sea. There were no significant differences between the two groups in the Askö sediment. In Getå Stream sediments mineralization rates ranged between 4.059 mmol C m-2 d-1 and 6.806 mmol C m-2 d-1 with and without advective flow, respectively. The mineralization rates for Getå Stream correspond with earlier studies of carbon mineralization rates in a stream in New Hampshire.

Page generated in 0.0672 seconds