• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effectiveness of Porous Pavement and an Infiltration Trench as Urban Best Management Practices

Lathrop, Mitchell Currie 11 February 1999 (has links)
The following study is a demonstration of the effectiveness of porous pavement and an infiltration trench as Best Management Practices (BMPs) in the reduction of stormwater and its constituents. The field work of the study was conducted from 1986 through 1988 and the report was written in 1990 and finalized in 1996. Results of the study show that porous pavement and the infiltration trench significantly reduced the volume of stormwater runoff as well as its constituents from an urban parking lot area. In addition, wetfall and dryfall were found to be the major contributors to the runoff loading and yet were not comparable to associated studies. Peak and total flow runoff volumes were reduced significantly thereby reducing the overall pollutant loading. Antecedent dry period was found to be related to pollutant loading but only up to about 5 days total. / Master of Science
2

Analysis of stormwater runoff from permeable friction course

Frasier, Patrick Martin 07 September 2010 (has links)
Recently, the Texas Department of Transportation began using Permeable Friction Course (PFC), a 5 cm overlay of porous pavement that is applied over conventional pavement. PFC was initially developed because it allows water to drain off the surface of roads much more rapidly, thus reducing visual impairment due to splash and spray as well as reducing the risk of hydroplaning. While investigating the water quality of stormwater runoff, researchers at the University of Texas discovered that PFC caused a reduction in many common stormwater pollutant concentrations. Monitoring of stormwater at one site has been ongoing for 5 years without any indication of a decline in water quality. A second location provided paired samples to analyze the particle size distribution. Results show a significant reduction in the mass of particles commonly associated with heavy metals and nutrient loads. A third location was chosen based on tests indicating it to have a lower hydraulic conductivity relative to other locations. The paired samples provided a comparison of runoff quality at a site believed to be heavily clogged. The results show PFC continues to produce significantly lower runoff pollutant concentrations despite the decreased hydraulic conductivity. / text
3

Drainage hydraulics of porous pavement : coupling surface and subsurface flow

Eck, Bradley Joseph 06 October 2010 (has links)
Permeable friction course (PFC) is a porous asphalt pavement placed on top of a regular impermeable roadway. Under small rainfall intensities, drainage is contained within the PFC layer; but, under higher rainfall intensities drainage occurs both within and on top of the porous pavement. This dissertation develops a computer model—the permeable friction course drainage code (PERFCODE)—to study this two-dimensional unsteady drainage process. Given a hyetograph, geometric information, and hydraulic properties, the model predicts the variation of water depth within and on top of the PFC layer through time. The porous layer is treated as an unconfined aquifer of variable saturated thickness using Darcy’s law and the Dupuit-Forchheimer assumptions. Surface flow is modeled using the diffusion wave approximation to the Saint-Venant equations. A mass balance approach is used to couple the surface and subsurface phases. Straight and curved roadway geometries are accommodated via a curvilinear grid. The model is validated using steady state solutions that were obtained independently. PERFCODE was applied to a field monitoring site near Austin, Texas and hydrographs predicted by the model were consistent with field measurements. For a sample storm studied in detail, PFC reduced the duration of sheet flow conditions by 80%. The model may be used to improve the drainage design of PFC roadways. / text
4

O desempenho de pavimentos permeáveis como medida mitigadora da impermeabilização do solo urbano. / The performance of permeable pavements as a mitigation measure of impermeabilization of urban soil.

Pinto, Liliane Lopes Costa Alves 08 April 2011 (has links)
É fato que a crescente urbanização e a conseqüente impermeabilização do solo são alguns dos principais fatores que interferem no escoamento das águas de chuva. Isso se retrata na aceleração do escoamento, com a diminuição dos tempos de trânsito e aumento dos picos de vazão. É cada vez mais freqüente a ocorrência de inundações em áreas que anteriormente não eram atingidas. A impermeabilização de grandes áreas que possam vir a interferir nas condições hidrológicas de determinada região deve ser analisada pelos órgãos fiscalizadores. O meio técnico e acadêmico se vê frente a frente com o desafio de pesquisar, estudar, analisar e propor técnicas que possam atenuar os efeitos causados pelas chuvas em áreas densamente urbanizadas. Este trabalho intenciona dar uma contribuição à drenagem urbana e vem propor a adoção de uma técnica compensatória que se mostrou muito eficiente. Trata-se do pavimento permeável do tipo sem infiltração no solo. Este dispositivo foi implantado de maneira convencional em um estacionamento na Universidade de São Paulo e contou com o suporte financeiro da Prefeitura do Município de São Paulo. Foram monitorados dois tipos de estrutura com revestimentos de BCP e CPA, durante o período de 6 meses. A instrumentação constou de uma estação pluviométrica e 4 sensores de nível instalados em caixas coletoras dotadas de vertedouros. Durante a pesquisa foi desenvolvido um modelo matemático para validação do modelo físico. Ao final dos estudos concluiu-se que o desempenho do pavimento permeável para os dois tipos de estruturas monitoradas resultou em amortecimento da vazão afluente entre 28% e 87% no BCP e 56% e 85% no CPA. Portanto, esse tipo de dispositivo se mostrou muito eficiente. / The increasing urbanization and the consequent imperviousness of the soil are the main factors that may interfere with the flow of stormwater. It causes the accelerating of the flow with the decrease in transit times and the increase of peak flows. The occurrence of flooding in areas not previously affected is getting more frequently. The imperviousness of large areas that may interfere with the hydrological conditions of a region should be analyzed by the technicians. The technicians and academics find themselves face to face with the challenge of researching, studying, analyzing and proposing techniques that can mitigate the effects caused by rain in densely urbanized areas. This study intends to give a contribution to the urban drainage and is proposing the adoption of a compensatory technique that has proved very efficient. This is the type of permeable pavement without infiltration into the soil. This device was implanted in a conventional way in a parking lot at the University of Sao Paulo with the financial support of the Sao Paulo City Hall. During 6 months two types of permeable pavements covered with permeable interlocking concrete pavement and porous pavement were monitored. The instrumentation consisted of a rain collector and four level sensors installed in collection boxes provided with spillways. During the research it was developed a mathematical model to validate the physical model. At the end of the studies it was concluded that the performance of permeable pavement for the two types of structures monitored resulted in weakening of flow between 28% and 87% in the permeable interlocking concrete pavement and 56% and 85% in the porous pavement. Therefore, this type of device was very effective.
5

LIXIVIAÇÃO DE SULFATO E METAIS PESADOS EM CONCRETO PERMEÁVEL PRODUZIDO COM AGREGADO RECICLADO DE RESÍDUOS SÓLIDOS DA CONSTRUÇÃO CIVIL

Mikami, Rafael Jansen 31 March 2017 (has links)
Made available in DSpace on 2017-07-20T13:42:00Z (GMT). No. of bitstreams: 1 Rafael Jansen Mikami.pdf: 3198153 bytes, checksum: 6a277457317456e313f7f86a96cd4474 (MD5) Previous issue date: 2017-03-31 / The use of recycled aggregates for producing concrete has been studied as a way to reuse construction waste. However, these aggregates may contain contaminants that may cause the leaching of pollutants, especially in open places, such as floors and sidewalks. Thus, the objective of this study was to verify the releasing of sulfates and heavy metals in the water by leaching of pervious concrete made of recycled aggregates. Six types of aggregates were produced with uniform granulometric distribution. One of the aggregates was conventional aggregate and the other ones were recycled aggregates. For each type of aggregate, containing different ceramic contents, concrete specimens were made. To perform the leaching test, pervious concrete specimens were immersed in ultrapure water, which was renewed after 24, 48, 168 and 384 h from the start of the test. The leached water was analyzed for pH, electrical conductivity, alkalinity, chemical oxygen demand (COD), total solids, sulfates and potentially toxic elements (Cr, Cd, Zn, Pb, Cu). It was verified that all concretes produced had a permeability coefficient above the minimum recommended value for use as a pervious pavement, of 0,10 cm.s-1. However, the maximum compressive strength obtained was 10,15 MPa, not reaching the minimum for use in pavements (20 MPa). The incorporation of ceramic material in the aggregate resulted in an increase in water absorption. The leaching tests showed that the pH of the concrete leachate remained alkaline, reaching an overall average value of 11,5. The electrical conductivity throughout the experiment increased, demonstrating that the concrete continued to release ions over the 16 day period. The mean sulfate concentration in the leachate varied between 21,3 and 71,7 mg.L-1 after 24 h of the test, gradually reducing until the last sampling, in which the concentration was between 2,4 and 21,6 mg.L-1. No direct relationship between the sulfate concentration and the ceramic content in the aggregate was observed. However, it was visually verified that a specimen was contaminated with gypsum, implying a sulfate concentration five times higher than the other samples of the same treatment, increasing the mean of the treatment. Significant quantities of chromium were detected in the leachate, mainly of the concrete made with 100% ceramic aggregate, which released 0,083 mg.L-1 of chromium. In all treatments, cadmium concentrations in the leachate were between 0,009 and 0,113 mg.L-1, exceeding the maximum limit of 0,005 mg.L-1, established by Brazilian Standard (NBR) 10004:2004. / O uso de agregados reciclados na confecção de concretos tem sido estudado como uma forma de reutilizar os resíduos da construção civil. Entretanto, esses agregados podem conter contaminantes, havendo o risco da lixiviação de poluentes, principalmente em locais expostos ao ambiente, como pisos e calçadas. Dessa forma, o objetivo deste estudo foi verificar a liberação de sulfatos e metais pesados na água pela lixiviação de concreto permeável confeccionado com agregados graúdos reciclados. Seis tipos de agregados foram produzidos com distribuição granulométrica uniforme, sendo um agregado convencional e os demais agregados reciclados. Para cada tipo de agregado, contendo diferentes teores de cerâmica, foram confeccionados corpos de prova de concreto. Para a realização do teste de lixiviação, corpos de prova de concreto permeável foram imersos em água ultrapura, sendo esta renovada após 24, 48, 168 e 384 h do início do ensaio. A água lixiviada foi analisada quanto ao pH, condutividade elétrica, alcalinidade, a demanda química de oxigênio (DQO), sólidos totais, sulfatos e elementos potencialmente tóxicos (Cr, Cd, Zn, Pb, Cu). Verificou-se que todos os concretos produzidos apresentaram coeficiente de permeabilidade acima do valor mínimo recomendado para uso como pavimento permeável, de 0,10 cm.s-1. No entanto, a resistência à compressão máxima obtida foi de 10,15 MPa, não atingindo o mínimo para utilização em pavimentos (20 MPa). A incorporação de material cerâmico no agregado resultou em um crescente aumento na absorção de água. Os testes de lixiviação demonstraram que o pH do lixiviado de concreto se manteve alcalino, atingindo um valor médio geral de 11,5. A condutividade elétrica ao longo do experimento aumentou, demonstrando que o concreto continuou a liberar íons ao longo do período de 16 dias. A concentração média de sulfato no lixiviado variou entre 21,3 e 71,7 mg.L-1 após 24 h de ensaio, reduzindo gradualmente até a última coleta, na qual a concentração se situou entre 2,4 e 21,6 mg.L-1. Não foi constatada relação direta entre a concentração de sulfato e o teor de material cerâmico no agregado. No entanto, verificou-se visualmente que um corpo de prova estava contaminado com gesso, o que implicou em uma concentração de sulfato cinco vezes superior às demais amostras do mesmo tratamento, elevando a média do tratamento. Foram detectadas quantidades significativas de cromo no lixiviado, principalmente do concreto confeccionado com agregado 100% cerâmico, que liberou 0,083 mg.L-1 de cromo. Em todos os tratamentos verificaram-se concentrações de cádmio no lixiviado entre 0,009 e 0,113 mg.L-1, ultrapassando o limite máximo de 0,005 mg.L-1, estabelecido pela Norma Brasileira (NBR) 10004:2004.
6

O desempenho de pavimentos permeáveis como medida mitigadora da impermeabilização do solo urbano. / The performance of permeable pavements as a mitigation measure of impermeabilization of urban soil.

Liliane Lopes Costa Alves Pinto 08 April 2011 (has links)
É fato que a crescente urbanização e a conseqüente impermeabilização do solo são alguns dos principais fatores que interferem no escoamento das águas de chuva. Isso se retrata na aceleração do escoamento, com a diminuição dos tempos de trânsito e aumento dos picos de vazão. É cada vez mais freqüente a ocorrência de inundações em áreas que anteriormente não eram atingidas. A impermeabilização de grandes áreas que possam vir a interferir nas condições hidrológicas de determinada região deve ser analisada pelos órgãos fiscalizadores. O meio técnico e acadêmico se vê frente a frente com o desafio de pesquisar, estudar, analisar e propor técnicas que possam atenuar os efeitos causados pelas chuvas em áreas densamente urbanizadas. Este trabalho intenciona dar uma contribuição à drenagem urbana e vem propor a adoção de uma técnica compensatória que se mostrou muito eficiente. Trata-se do pavimento permeável do tipo sem infiltração no solo. Este dispositivo foi implantado de maneira convencional em um estacionamento na Universidade de São Paulo e contou com o suporte financeiro da Prefeitura do Município de São Paulo. Foram monitorados dois tipos de estrutura com revestimentos de BCP e CPA, durante o período de 6 meses. A instrumentação constou de uma estação pluviométrica e 4 sensores de nível instalados em caixas coletoras dotadas de vertedouros. Durante a pesquisa foi desenvolvido um modelo matemático para validação do modelo físico. Ao final dos estudos concluiu-se que o desempenho do pavimento permeável para os dois tipos de estruturas monitoradas resultou em amortecimento da vazão afluente entre 28% e 87% no BCP e 56% e 85% no CPA. Portanto, esse tipo de dispositivo se mostrou muito eficiente. / The increasing urbanization and the consequent imperviousness of the soil are the main factors that may interfere with the flow of stormwater. It causes the accelerating of the flow with the decrease in transit times and the increase of peak flows. The occurrence of flooding in areas not previously affected is getting more frequently. The imperviousness of large areas that may interfere with the hydrological conditions of a region should be analyzed by the technicians. The technicians and academics find themselves face to face with the challenge of researching, studying, analyzing and proposing techniques that can mitigate the effects caused by rain in densely urbanized areas. This study intends to give a contribution to the urban drainage and is proposing the adoption of a compensatory technique that has proved very efficient. This is the type of permeable pavement without infiltration into the soil. This device was implanted in a conventional way in a parking lot at the University of Sao Paulo with the financial support of the Sao Paulo City Hall. During 6 months two types of permeable pavements covered with permeable interlocking concrete pavement and porous pavement were monitored. The instrumentation consisted of a rain collector and four level sensors installed in collection boxes provided with spillways. During the research it was developed a mathematical model to validate the physical model. At the end of the studies it was concluded that the performance of permeable pavement for the two types of structures monitored resulted in weakening of flow between 28% and 87% in the permeable interlocking concrete pavement and 56% and 85% in the porous pavement. Therefore, this type of device was very effective.
7

Evaluation of the sustainability of controlling diffuse water pollution in urban areas on a life cycle basis

Tomasini Montenegro, Claudia January 2013 (has links)
Diffuse water pollution in urban areas is growing due to polluted runoffs. Therefore, there is a need to treat this kind of pollution. Different structural treatment practices can be used for these purposes. However, little is known about their environmental, economic and social impacts. Therefore, the aim of this study has been to develop an integrated methodology for sustainability evaluation of structural treatment practices, considering environmental, economic and social aspects. Both environmental and economic evaluations have been carried out on a life cycle basis, using life cycle assessment and life cycle costing, respectively. For social evaluation, a number of social indicators, identified and developed in this research, have been used. The methodology has been applied to the case of the Magdalena river catchment in Mexico City. Three structural treatment practices have been analysed: bio-retention unit, infiltration trench and porous pavement. Based on the assumptions and the results from this work, the bio-retention unit appears to be environmentally the most sustainable option for treatment of diffuse water pollution. It is also the second-best option for social sustainability, slightly behind the porous pavement. However, if the costs of treatment are the priority, then the porous pavement would be the cheapest option. If all the sustainability aspects evaluated here are considered of equal importance, then the bio-retention unit is the most sustainable option. Therefore, trade-offs between the different sustainability aspects are important and should be considered carefully before any decisions are made on diffuse water pollution treatment. This also includes the trade-offs with the additional life cycle impacts generated by the treatment options compared to the impacts from the untreated runoff. The decisions can only be made by the appropriate stakeholders; however, some recommendations are given, based on the outcomes of this research.
8

Water Fluxes in Soil-Pavement Systems: Integrating Trees, Soils and Infrastructure

de la Mota Daniel, Francisco Javier 31 January 2019 (has links)
In urban areas, trees are often planted in bare soil sidewalk openings (tree pits) which recently are being covered with permeable pavements. Pavements are known to alter soil moisture and temperature, and may have implications for tree growth, root development and depth, drought resilience, and sidewalk lifting. Furthermore, tree pits are often the only unsealed soil surface and are important for water exchange between soil and atmosphere. Therefore, covering tree pits with pavement, even permeable, may have implications for the urban water balance and stormwater management. A better understanding of permeable pavement on tree pavement soil system functioning can inform improved tree pit and street design for greater sustainability of urban environments. We conducted experiments at two sites in Virginia, USA (Mountains and Coastal Plain) with different climate and soil. At each location, we constructed 24 tree pits in a completely randomized experiment with two factors: paved with resin-bound porous-permeable pavement versus unpaved, and planted with Platanus x acerifolia 'Bloodgood' versus unplanted (n = 6). We measured tree stem diameter, root growth and depth, and soil water content and temperature over two growing seasons. We also monitored tree sap flow one week in June 2017 at the Mountains. In addition, we calibrated and validated a soil water flow model, HYDRUS-1D, to predict soil water distribution for different rooting depths, soil textures and pavement thicknesses. Trees in paved tree pits grew larger, with stem diameters 29% (Mountains) and 51% (Coastal Plain) greater. Roots developed faster under pavement, possibly due to the increased soil water content and the extended root growing season (14 more days). Tree transpiration was 33% of unpaved and planted pit water outputs, while it was 64% for paved and planted pits. In June 2016, planted pits had decreased root-zone water storage, while unplanted pits showed increased storage. A water balance of the entire experimental site showed overall decreased soil water storage due to tree water extraction becoming the dominant factor. HYDRUS-1D provided overall best results for model validation at 10 cm depth from soil surface (NSE = 0.447 for planted and paved tree pits), compared to 30- and 60 cm depths. HYDRUS-1D simulations with greater pavement thickness resulted in changes in predicted soil water content at the Coastal Plain, with higher values at 10- and 30-cm depths, but lower values at 60-cm depth. At the Mountains, virtually no difference was observed, possibly due to different soil texture (sandy vs clayey). Tree pits with permeable pavement accelerated tree establishment, but promoted shallower roots, possibly increasing root-pavement conflicts and tree drought susceptibility. Paved tree pits resulted in larger trees, increasing tree transpiration, but reduced soil evaporation compared to unpaved pits. Larger bare soil pits surrounded by permeable pavement might yield the best results to improve urban stormwater retention. Also, HYDRUS 1D was successful at simulating soil water content at 10-cm depth and may be valuable to inform streetscape design and planning. / PHD / Trees in cities are often planted in pavement cutouts (tree pits) that are usually the only available area for water exchange between soil and atmosphere. Tree pits are typically covered with a variety of materials, including permeable pavement. Pavements are known to modify soil water distribution and temperature, affecting tree growth, rooting depth, drought resilience, and sidewalk lifting. A better understanding of this system can inform tree pit and street design for greater sustainability. We constructed 24 tree pits at each of two regions in Virginia, USA (Mountains and Coastal Plain). These tree pits were paved with permeable pavement or unpaved, and planted with London Plane or unplanted. We measured stem diameter, root growth, and soil water content and temperature over two years and tree sap flow for one week in summer (Mountains only). We also used a soil water flow model, HYDRUS-1D, to predict water distribution for different rooting depths, soil textures and pavement thicknesses. After the first growing season trees in pavement were larger, with stem diameters 29% (Mountains) and 51% (Coastal Plain) greater. Roots developed faster under pavement, possibly due to increased soil water content and a 14-day increase in root growing season. Also, in June 2017, tree transpiration was 33% of unpaved-and-planted pit water outputs, and 64% of paved-and-planted pits. In June 2016, root-zone water storage decreased in planted pits but increased in unplanted pits. When considering the entire experimental site, soil water storage decreased, with tree water extraction being the dominant factor. HYDRUS-1D performed better at 10-cm soil depth than at 30- and 60-cm depths. At the Coastal Plain, HYDRUS-1D predicted higher soil water content at 10- and 30-cm depths with increased pavement thickness, but lower values at 60-cm depth. At the Mountains, there was no effect, possibly due to higher clay content. Permeable pavement accelerated tree establishment, but promoted shallower roots, increasing drought susceptibility and risk for root-pavement conflicts. Pavement resulted in larger trees and greater transpiration, but reduced soil evaporation. Larger bare-soil pits surrounded by permeable pavement might optimize stormwater retention.

Page generated in 0.0685 seconds