1 |
Behavioural asset pricing in Chinese stock marketsXu, Yihan January 2011 (has links)
This thesis addresses asset pricing in Chinese A-share stock markets using a dataset consisting of all shares listed in Shanghai and Shenzhen stock exchanges from January 1997 to December 2007. The empirical work is carried out based on two theoretical foundations: the efficient market hypothesis and behavioural finance. It examines and compares the validity of two traditional asset pricing models and two behavioural asset pricing models. The investigation is initially performed within a traditional asset pricing framework. The three-factor Fama-French model is estimated and then augmented by additional macroeconomic and bond market variables. The results suggest that these traditional asset pricing models fail to explain fully the time-variation of stock returns in Chinese stock markets, leaving non-normally distributed and heteroskedastic residuals, calling for further explanatory variables and suggesting the existence of a structure break. Indeed, the macroeconomic and bond market factors provide little help to the asset pricing model. Using the Fama-French model as the benchmark, further research is done by investigating investor sentiment as the third dimension beside returns and risks. Investor sentiment helps explain the mis-pricing component of returns in the Fama-French model and the time-variation in the factors themselves. Incorporating investor sentiment into the asset pricing model improves the model performance, lessening the importance of the Fama-French factors, and suggesting that in China, sentiment affects both the way in which investors judge risks as well as portfolio returns directly. The sentiment effect on asset pricing is also examined under a nonlinear Markov-switching framework. The stochastic regime-dependent model reveals that stock returns in China are driven by fundamental factors in bear and low volatility markets but are prone to sentiment and become uncoupled from fundamental risks in bull and high volatility markets.
|
2 |
Anomalies on the London Stock Exchange : the influence of the bid-ask spread and nonsynchronous tradingBatty, Richard Andrew January 1994 (has links)
This thesis tests for seasonal anornalies and daily predictability on the UK stock market and investigates how mispricing caused by the bid-ask spread, known as the 'touch' and nonsynchronous trading in portfolio returns may explain these anomalies. By using constructed portfolios within a th-ne-series regression framework, I show that seasonality, in the first instance, is prominent in returns around the turn of the week and the turn of the year. However, this seasonal returns behaviour disappears when the touch is accounted for. Indeed, seasonality seerns to occur in the touch rather than returns. Despite this touch explanation, lagged returns remain significant, suggesting return predictability. In fact, when using a price adjustment model returns are predictable across portfolios. This predictability, while to some extent dependent upon firm size and the touch, may be accounted for by nonsynchronous trading. First-order autocorrelation and cross-autocorrelation found in returns proves more indicative of infrequent trading than return predictability. Thus, these results confirm that mismeasurernent in portfolio returns caused by market microstructure and nonsynchronous trading can create false inferences about the extent of stock market anornalies in the UK and subsequently, market efficiency.
|
3 |
Modelling portfolios with heavy-tailed risk factors / Modelování portfolií s risk faktory s těžkými chvostyKyselá, Eva January 2015 (has links)
The thesis aims to investigate some of the approaches to modelling portfolio returns with heavy-tailed risk factors. It first elaborates on the univariate time series models, and compares the benchmark model (GARCH with Student t innovations or its GJR extension) predictive performance with its two competitors, the EVT-GARCH model and the Markov-Switching Multifractal (MSM) model. The motivation of EVT extension of GARCH specification is to use a more proper distribution of the innovations, based on the empirical distribution function. The MSM is one of the best performing models in the multifractal literature, a markov-switching model which is unique by its parsimonious specification and variability. The performance of these models is assessed with Mincer-Zarnowitz regressions as well as by comparison of quality of VaR and expected shortfall predictions, and the empirical analysis shows that for the risk management purposes the EVT-GARCH dominates the benchmark as well as the MSM. The second part addresses the dependence structure modelling, using the Gauss and t-copula to model the portfolio returns and compares the result with the classic variance-covariance approach, concluding that copulas offer a more realistic estimates of future extreme quantiles.
|
4 |
Does the Fama-French three-factor model and Carhart four-factor model explain portfolio returns better than CAPM? : - A study performed on the Swedish stock market.Rehnby, Nicklas January 2016 (has links)
This essay will compare the capital asset pricing model (CAPM), Fama and French threefactor model and Carhart´s four-factor model, to see which of these models that can explain portfolio excess returns best on the Swedish stock market. This thesis will tempt to validate the three and four-factor models because of the limited amount of research done on the Swedish stock market. The results indicate that the three-factor model improves explanatory power for portfolio returns in comparison to the CAPM, and the four-factor model gives a small improvement in the explanatory power compared to the three-factor model. The results also indicate that all models have a low explanatory power when the market is volatile.
|
5 |
Three essays in asset pricing and llimate financeN'Dri, Kouadio Stéphane 08 1900 (has links)
Cette thèse, divisée en trois chapitres, contribue à la vaste et récente littérature sur l'évaluation des actifs et la finance climatique. Le premier chapitre contribue à la littérature sur la finance climatique tandis que les deux derniers contribuent à la littérature sur l'évalutaion des actifs.
Le premier chapitre analyse comment les politiques environnementales visant à réduire les émissions de carbone affectent les prix des actifs et la consommation des ménages. En utilisant de nouvelles données, je propose une mesure des émissions de carbone du point de vue du consommateur et une mesure du risque de croissance de la consommation de carbone. Les mesures sont basées sur des informations sur la consommation totale et l'empreinte carbone de chaque bien et service. Pour analyser les effets des politiques environnementales, un modèle de risques de long terme est développé dans lequel la croissance de la consommation comprend deux composantes: le taux de croissance de la consommation de carbone et le taux de croissance de la part de la consommation de carbone dans la consommation totale. Ce chapitre soutient que le risque de long terme de la croissance de la consommation provient principalement de la croissance de la consommation de carbone découlant des politiques et des actions visant à réduire les émissions, telles que l'Accord de Paris et la Conférence des Nations Unies sur le changement climatique (COP26). Mon modèle aide à détecter le risque de long terme dans la consommation des politiques climatiques tout en résolvant simultanément les énigmes de la prime de risque et de la volatilité, et en expliquant la coupe transversale des actifs. La décomposition de la consommation pourrait conduire à identifier les postes de consommation les plus polluants et à construire une stratégie d'investissement minimisant ou maximisant un critère environnemental de long terme.
Le deuxième chapitre (co-écrit avec René Garcia et Caio Almeida) étudie le rôle des facteurs non linéaires indépendants dans la valorisation des actifs. Alors que la majorité des facteurs d'actualisation stochastique (SDF) les plus utilisés qui expliquent la coupe transversale des rendements boursiers sont obtenus à partir des composantes principales linéaires, nous montrons dans ce deuxième chapitre que le fait de permettre la substitution de certaines composantes principales linéaires par des facteurs non linéaires indépendants améliore systématiquement la capacité des facteurs d'actualisation stochastique de valoriser la coupe transversale des actifs. Nous utilisons les 25 portefeuilles de Fama-French, cinquante portefeuilles d'anomalies et cinquante anomalies plus les termes d'interaction basés sur les caractéristiques pour tester l'efficacité des facteurs dynamiques non linéaires. Le SDF estimé à l'aide d'un mélange de facteurs non linéaires et linéaires surpasse ceux qui utilisent uniquement des facteurs linéaires ou des rendements caractéristiques bruts en termes de performance mesurée par le R-carré hors échantillon. De plus, le modèle hybride - utilisant à la fois des composantes principales non linéaires et linéaires - nécessite moins de facteurs de risque pour atteindre les performances hors échantillon les plus élevées par rapport à un modèle utilisant uniquement des facteurs linéaires.
Le dernier chapitre étudie la prévisibilité du rendement des anomalies à travers les déciles à l'aide d'un ensemble de quarante-huit variables d'anomalie construites à partir des caractéristiques de titres individuels. Après avoir construit les portefeuilles déciles, cet article étudie leur prévisibilité en utilisant leurs propres informations passées et d'autres prédicteurs bien connus. Les analyses révèlent que les rendements des portefeuilles déciles sont persistants et prévisibles par le ratio de la valeur comptable sur la valeur de marché de l'entreprise, la variance des actions, le rendement des dividendes, le ratio des prix sur les dividendes, le taux de rendement à long terme, le rendement des obligations d'entreprise, le TED Spread et l'indice VIX. De plus, une stratégie consistant à prendre une position longue sur le décile avec le rendement attendu le plus élevé et à prendre une position courte sur le décile avec le rendement attendu le plus bas chaque mois donne des rendements moyens et un rendement par risque bien meilleurs que la stratégie traditionnelle fondée sur les déciles extrêmes pour quarante-cinq des quarante-huit anomalies. / This thesis, divided into three chapters, contributes to the vast and recent literature on asset pricing, and climate finance. The first chapter contributes to the climate finance literature while the last two contribute to the asset pricing literature.
The first chapter analyzes how environmental policies that aim to reduce carbon emissions affect asset prices and household consumption. Using novel data, I propose a measure of carbon emissions from a consumer point of view and a carbon consumption growth risk measure. The measures are based on information on aggregate consumption and the carbon footprint for each good and service. To analyze the effects of environmental policies, a long-run risks model is developed where consumption growth is decomposed into two components: the growth rate of carbon consumption and the growth rate of the share of carbon consumption out of total consumption. This paper argues that the long-run risk in consumption growth comes mainly from the carbon consumption growth arising from policies and actions to curb emissions, such as the Paris Agreement and the U.N. Climate Change Conference (COP26). My model helps to detect long-run risk in consumption from climate policies while simultaneously solving the equity premium and volatility puzzles, and explaining the cross-section of assets. The decomposition of consumption could lead to identifying the most polluting consumption items and to constructing an investment strategy that minimizes or maximizes a long-term environmental criterion.
The second chapter (co-authored with René Garcia, and Caio Almeida) studies the role of truly independent nonlinear factors in asset pricing. While the most successful stochastic discount factor (SDF) models that price well the cross-section of stock returns are obtained from regularized linear principal components of characteristic-based returns we show that allowing for substitution of some linear principal components by independent nonlinear factors consistently improves the SDF's ability to price this cross-section. We use the Fama-French 25 ME/BM-sorted portfolios, fifty anomaly portfolios, and fifty anomalies plus characteristic-based interaction terms to test the effectiveness of the nonlinear dynamic factors. The SDF estimated using a mixture of nonlinear and linear factors outperforms the ones using solely linear factors or raw characteristic returns in terms of out-of-sample R-squared pricing performance. Moreover, the hybrid model --using both nonlinear and linear principal components-- requires fewer risk factors to achieve the highest out-of-sample performance compared to a model using only linear factors.
The last chapter studies anomaly return predictability across deciles using a set of forty-eight anomaly variables built using individual stock characteristics. After constructing the decile portfolios, this paper studies their predictability using their own past information, and other well-known predictors. The analyses reveal that decile portfolio returns are persistent and predictable by book-to-market, stock variance, dividend yield, dividend price ratio, long-term rate of return, corporate bond return, TED Spread, and VIX index. Moreover, a strategy consisting of going long on the decile with the highest expected return and going short on the decile with the lowest expected return each month gives better mean returns and Sharpe ratios than the traditional strategy based on extreme deciles for forty-five out of forty-eight anomalies.
|
Page generated in 0.0576 seconds