Spelling suggestions: "subject:"post estimation"" "subject:"pode estimation""
191 |
Integrating Machine Learning for Intelligent Fitness Exercise Monitoring : master's thesisЭль Хамзауи, У., El Hamzaoui, O. January 2024 (has links)
Фитнес занимает важное место в жизни людей. Хорошие привычки фитнеса могут улучшить работу сердца и легких, повысить концентрацию, предотвратить ожирение и эффективно снизить риск смерти. Люди получают свои знания о фитнесе в основном из социальных сетей. Исследования показывают, что поддержание фитнеса имеет решающее значение для пропаганды здорового образа жизни и используется для оценки качества жизни, связанного со здоровьем. Хотя привлечение фитнес-тренера может быть эффективным подходом к поощрению регулярных упражнений и общего благополучия, это не всегда может быть осуществимо или доступно в определенных ситуациях. Стоит отметить, что упражнения имеют многочисленные преимущества для здоровья, но при неправильном выполнении они могут быть как неэффективными, так и потенциально опасными. Люди, которые тренируются без надлежащего контроля, часто совершают ошибки, такие как использование неправильных форм, что может привести к серьезным последствиям, таким как травмы подколенных сухожилий или падения. но способность к обучению ограничена. Неполная физическая подготовка может привести к травмам, а дешевая, своевременная и точная система определения физической подготовки может снизить риск травм и эффективно улучшить осведомленность людей о своей физической форме. В прошлом многие исследования были посвящены обнаружению фитнес-движений, среди которых обнаружение фитнес-движений на основе носимых устройств, узлов тела и глубокого обучения изображений достигло более высокой производительности. Однако носимое устройство не может обнаруживать различные фитнес-движения, может мешать физическим упражнениям пользователя и имеет высокую стоимость. Оба метода, основанные на узлах тела и на глубоком обучении изображений, имеют более низкую стоимость, но у каждого есть некоторые недостатки. Поэтому в этой статье использовался алгоритм оценки позы человека, такой как Yolov7, OpenPose и, в частности, Mediapipe, для оптимизации производительности приседаний на разных уровнях мастерства; эта система обеспечивает анализ техник приседаний в реальном времени. Настраиваемые режимы, предназначенные для новичков и профессионалов, обеспечивают персонализированную обратную связь, позволяя пользователям эффективно совершенствовать свою форму. Используя методы компьютерного зрения и машинного обучения, включая MediaPipe, OpenCV и Python, система отслеживает движения пользователей, предоставляя на экране руководство и слуховые подсказки для коррекции осанки и прогресса тренировки. AI-Fit предлагает решение, позволяющее людям безопасно заниматься спортом под руководством экспертов, и удовлетворяет потребность в персонализированных фитнес-тренировках, профилактике травм и мотивации, в конечном итоге улучшая общую физическую форму и самочувствие пользователей. / Fitness is important in people’s lives. Good fitness habits can improve cardiopulmonary capacity, increase concentration, prevent obesity, and effectively reduce the risk of death. People obtain their fitness knowledge mostly from social media. Research indicates that maintaining fitness is crucial for promoting a healthy way of living and is used to assess one's health-related quality of life. While engaging a fitness trainer can be an effective approach to encouraging regular exercise and overall well-being, it may not always be feasible or affordable in certain situations. It is worth noting that exercise has numerous health benefits, but if performed incorrectly, it can be both ineffective and potentially hazardous. Individuals who work out without proper supervision often make mistakes such as using improper forms, which can lead to severe consequences, such as hamstring injuries or falls. but learning ability is limited. Incomplete fitness is likely to lead to injury, and a cheap, timely, and accurate fitness detection system can reduce the risk of fitness injuries and can effectively improve people’s fitness awareness. In the past, many studies have engaged in the detection of fitness movements, among which the detection of fitness movements based on wearable devices, body nodes, and image deep learning has achieved better performance. However, a wearable device cannot detect a variety of fitness movements, may hinder the exercise of the fitness user, and has a high cost. Both body-node-based and image-deep-learning-based methods have lower costs, but each has some drawbacks. Therefore, this paper used a human pose estimation algorithm such as Yolov7, OpenPose and particularly Mediapipe, to optimize squat performance across various skill levels, this system provides real-time analysis of squat techniques. Customized modes tailored for beginners and professionals deliver personalized feedback, empowering users to refine their form effectively. By employing techniques from computer vision and machine learning, including MediaPipe, OpenCV, and Python, the system tracks users' movements, providing on-screen guidance and auditory cues for posture correction and workout progression. AI-Fit offers a solution for individuals to exercise safely with expert guidance and addresses the need for personalized fitness training, injury prevention, and motivation, ultimately enhancing users' overall physical fitness and well-being.
|
192 |
Generation and Optimization of Local Shape Descriptors for Point Matching in 3-D SurfacesTaati, BABAK 01 September 2009 (has links)
We formulate Local Shape Descriptor selection for model-based object recognition in range data as an optimization problem and offer a platform that facilitates a solution. The goal of object recognition is to identify and localize objects of interest in an image. Recognition is often performed in three phases: point matching, where correspondences are established between points on the 3-D surfaces of the models and the range image; hypothesis generation, where rough alignments are found between the image and the visible models; and pose refinement, where the accuracy of the initial alignments is improved. The overall efficiency and reliability of a recognition system is highly influenced by the effectiveness of the point matching phase. Local Shape Descriptors are used for establishing point correspondences by way of encapsulating local shape, such that similarity between two descriptors indicates geometric similarity between their respective neighbourhoods.
We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods and allows for tuning descriptors to the geometry of specific models and to sensor characteristics. Our descriptors, termed as Variable-Dimensional Local Shape Descriptors, are constructed as multivariate observations of several local properties and are represented as histograms. The optimal set of properties, which maximizes the performance of a recognition system, depend on the geometry of the objects of interest and the noise characteristics of range image acquisition devices and is selected through pre-processing the models and sample training images. Experimental analysis confirms the superiority of optimized descriptors over generic ones in recognition tasks in LIDAR and dense stereo range images. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2009-09-01 11:07:32.084
|
193 |
Určení pozice kamery v reálném čase pro rozšířenou realitou / Real-time camera pose estimation for augmented realitySzentandrási, István Unknown Date (has links)
Definované markery tvoří základ určování polohy kamery pro velké množství aplikací s rozšířenou realitou, v případě že jsou přísné požadavky na rychlost a robustnost. Tato práce popisuje účinnou metodu pro určení pózy kamery pomocí Uniformního pole markerů a několik realistických aplikací na bázi popsané metody. Metoda je velice výpočetně levná a poskytuje spolehlivou detekci pro několik výpočetních platforem, včetně běžných chytrých telefonů. Markery jako část zobrazené informace na monitorech jsou použité v této práci pro určení relativní orientaci mezi poskytovatelem obsahu a užívatelským zařízením, sloužícím pro výběr prvků užívatelského rozhraní při interakci a migraci úkolů. Ve filmařském průmyslu poskytuje popsaná metoda pro zjištění polohy kamery jako součást klíčovaní pozadí filmářům živý náhled virtuální scény. Výsledky ukazují, že popsaná metoda pro detekci pole markerů má srovnatelnou úspěšnost a přesnost v porovnání s ostatními metodami na bázi markerů a je několikrát rýchlejší. Aplikace zahrnuté v této práci podle výsledků testů jsou životaschopné - rychlejší a levnější - alternativy k existujícím řešením.
|
194 |
Návrh a Aplikace Dvourozměrných Vizuálních Markerů pro Speciální Účely / Design and Applications of Special-Purpose Two-Dimensional Visual MarkersZachariáš, Michal Unknown Date (has links)
Současné vizuální markerové systémy mají jednu zásadní nevýhodu oproti tzv. markerless přístupům - pohyb kamery je omezen na oblast pokrytou markery. V každém snímku musí být marker dostatečně velký, aby jej bylo možné identifikovat a vypočítat pozici a rotaci kamery. Zároveň musí být dostatečně malý, aby se celý (nebo alespoň jeho podstatná část) vešel do záběru kamery. Avšak tyto požadavky jsou protichůdné. Tato práce nabízí řešení tohoto problému za pomoci konceptu Marker Fields. Jde o strukturu, jejíž přítomnost je možné v obraze kamery snadno detekovat a identifikovat část, na kterou se kamera právě dívá, a to na základě jakékoli (malé) podoblasti s definovanou velikostí. Aby bylo možné podoblasti identifikovat zblízka i zdálky, nejsou od sebe odděleny, ale do velké míry se překrývají. V této práci jsou vysvětleny různé implementace konceptu marker fields, spolu s jejich zamýšleným použitím a výhodami a nevýhodami. Jako důkaz použitelnosti marker fields v reálném světě, se druhá největší část této práce věnuje popisu jejich reálných aplikací.
|
195 |
Asynchronous Event-Feature Detection and Tracking for SLAM InitializationTa, Tai January 2024 (has links)
Traditional cameras are most commonly used in visual SLAM to provide visual information about the scene and positional information about the camera motion. However, in the presence of varying illumination and rapid camera movement, the visual quality captured by traditional cameras diminishes. This limits the applicability of visual SLAM in challenging environments such as search and rescue situations. The emerging event camera has been shown to overcome the limitations of the traditional camera with the event camera's superior temporal resolution and wider dynamic range, opening up new areas of applications and research for event-based SLAM. In this thesis, several asynchronous feature detectors and trackers will be used to initialize SLAM using event camera data. To assess the pose estimation accuracy between the different feature detectors and trackers, the initialization performance was evaluated from datasets captured from various environments. Furthermore, two different methods to align corner-events were evaluated on the datasets to assess the difference. Results show that besides some slight variation in the number of accepted initializations, the alignment methods show no overall difference in any metric. Overall highest performance among the event-based trackers for initialization is HASTE with mostly high pose accuracy and a high number of accepted initializations. However, the performance degrades in featureless scenes. CET on the other hand shows mostly lower performance compared to HASTE.
|
Page generated in 0.1159 seconds